Disjoint Hypercyclic Operators

Özgür Martin

Miami University

31/12/2011
A Surprising Approximation Theorem

(G. D. Birkhoff, 1929) There exists an entire function f whose translates $f(z + n)$, $n \geq 1$, can approximate any entire function, uniformly on compact sets.
A Surprising Approximation Theorem

- (G. D. Birkhoff, 1929) There exists an entire function \(f \) whose translates \(f(z + n), \ n \geq 1 \), can approximate any entire function, uniformly on compact sets.

- That is, for any entire \(g(z), \, \epsilon > 0 \), and compact \(K \subset \mathbb{C} \), we can find an integer \(n \) such that

\[
\sup_{z \in K} |f(z + n) - g(z)| < \epsilon.
\]
Let T be a continuous linear operator on a topological vector space X. If there is a vector $f \in X$ such that
\[
\{ T^n f : n \geq 1 \}
\]
is dense in X, then T is called \textbf{hypercyclic},
Let T be a continuous linear operator on a topological vector space X. If there is a vector $f \in X$ such that

- $\{T^n f : n \geq 1\}$ is dense in X, then T is called hypercyclic,

- $\text{span}\{T^n f : n \geq 1\}$ is dense in X, then T is called cyclic,
Dynamics of Linear Operators

Let T be a continuous linear operator on a topological vector space X. If there is a vector $f \in X$ such that

- $\{T^nf : n \geq 1\}$ is dense in X, then T is called hypercyclic,
- $\{\lambda T^nf : n \geq 1, \lambda \in \mathbb{C}\}$ is dense in X, then T is called supercyclic,
- $\text{span}\{T^nf : n \geq 1\}$ is dense in X, then T is called cyclic,
Dynamics of Linear Operators

Let T be a continuous linear operator on a topological vector space X. If there is a vector $f \in X$ such that

- $\{T^n f : n \geq 1\}$ is dense in X, then T is called **hypercyclic**,
- $\{\lambda T^n f : n \geq 1, \lambda \in \mathbb{C}\}$ is dense in X, then T is called **supercyclic**,
- $\text{span}\{T^n f : n \geq 1\}$ is dense in X, then T is called **cyclic**.

Such a vector f is said to be a hypercyclic, supercyclic, or cyclic vector for T, respectively.
Given a linear continuous operator $T : X \rightarrow X$, is it possible to find a non-trivial (not X or $\{0\}$) closed subspace (subset) $F \subset X$ for which $T(F) \subset F$?
Given a linear continuous operator $T : X \rightarrow X$, is it possible to find a non-trivial (not X or $\{0\}$) closed subspace (subset) $F \subset X$ for which $T(F) \subset F$?

Both were solved in the negative for Banach spaces (Subspace by P. Enflo, 1987 and Subset by C. Reed, 1988).
Given a linear continuous operator $T : X \to X$, is it possible to find a non-trivial (not X or $\{0\}$) closed subspace (subset) $F \subset X$ for which $T(F) \subset F$?

Both were solved in the negative for Banach spaces (Subspace by P. Enflo, 1987 and Subset by C. Reed, 1988).

Problems are still open for Hilbert spaces.
(Feldman, 2001) There exists a hypercyclic operator T acting on a separable Hilbert space \mathcal{H} which has the following property. For any compact metrizable space K and any continuous map $f : K \to K$, there exists a T-invariant compact set $L \subset \mathcal{H}$ such that f and $T|_L$ are topologically conjugate.
(MacLane, 1952)

Let $H(\mathbb{C})$ denote the space of entire functions endowed with the topology of locally uniform convergence.
Differentiation Operator

(MacLane, 1952)

- Let $H(\mathbb{C})$ denote the space of entire functions endowed with the topology of locally uniform convergence.
- The differentiation operator $D : H(\mathbb{C}) \to H(\mathbb{C})$ defined by $D(f) = f'$ is hypercyclic.
Let $\ell_p(\mathbb{N}) = \{(x_0, x_1, x_2, \ldots) : \sum_{n=0}^{\infty} |x_n|^p < \infty\}$ for $p \geq 1$. (Rolewicz, 1969)
Backward Shift Operator

(Rolewicz, 1969)

- Let $\ell_p(\mathbb{N}) = \{(x_0, x_1, x_2, \ldots) : \sum_{n=0}^{\infty} |x_n|^p < \infty\}$ for $p \geq 1$.
- Let $B : \ell_p(\mathbb{N}) \to \ell_p(\mathbb{N})$ be the backward shift operator defined by

$$B(x_0, x_1, x_2, \ldots) = (x_1, x_2, x_3, \ldots).$$
Backward Shift Operator

(Rolewicz, 1969)

- Let $\ell_p(\mathbb{N}) = \{(x_0, x_1, x_2, \ldots) : \sum_{n=0}^{\infty} |x_n|^p < \infty\}$ for $p \geq 1$.
- Let $B : \ell_p(\mathbb{N}) \to \ell_p(\mathbb{N})$ be the backward shift operator defined by $B(x_0, x_1, x_2, \ldots) = (x_1, x_2, x_3, \ldots)$.
- λB ($\lambda \in \mathbb{C}$) is hypercyclic on $\ell_p(\mathbb{N})$ if and only if $|\lambda| > 1$.
Composition Operators

Let Ω be a domain in \(\mathbb{C} \) and let \(H(\Omega) \) be the space of holomorphic functions on \(\Omega \), endowed with the topology of locally uniform convergence.
Let Ω be a domain in \mathbb{C} and let $H(\Omega)$ be the space of holomorphic functions on Ω, endowed with the topology of locally uniform convergence.

For each $\varphi \in H(\Omega)$ with $\varphi(\Omega) \subset \Omega$, let C_φ denote the composition operator defined by

$$f \overset{C_\varphi}{\mapsto} f \circ \varphi \quad (f \in H(\Omega)).$$
Hypercyclic Composition Operators

(Birkhoff) Let τ be the \mathbb{C}-automorphism given by $\tau(z) := z + a$ ($a \in \mathbb{C}, a \neq 0$). Then C_τ is hypercyclic on $H(\mathbb{C})$.
Hypercyclic Composition Operators

- **(Birkhoff)** Let \(\tau \) be the \(\mathbb{C} \)-automorphism given by \(\tau(z) := z + a \ (a \in \mathbb{C}, a \neq 0) \). Then \(C_\tau \) is hypercyclic on \(H(\mathbb{C}) \).

- **(Seidel and Walsh, 1941)** Let \(\phi \) be the \(\mathbb{D} \)-automorphism given by \(\phi(z) := \frac{z+a}{1+az} \ (a \in \mathbb{D}, a \neq 0) \). Then \(C_\phi \) is hypercyclic on \(H(\mathbb{D}) \).
(J. Bès and A. Peris (2007) also L. Bernal-González (2007))

We say that hypercyclic operators \(T_1, \ldots, T_N \) (\(N \geq 2 \)) are **d-hypercyclic** (**d-supercyclic**) provided that the direct sum operator \(T_1 \oplus \ldots \oplus T_N \) acting on \(X^N \) have a hypercyclic (supercyclic) vector in the form \((f, \ldots, f) \in X^N \).
Examples of D-Hypercyclic Operators

(Bernal and Bès and Peris) If $a_1, a_2 \in \mathbb{C}$ non-zero with $a_1 \neq a_2$, and $\tau_1(z) := z + a_1$ and $\tau_2(z) := z + a_2$, then C_{τ_1}, C_{τ_2} are d-hypercyclic on $H(\mathbb{C})$.
Examples of D-Hypercyclic Operators

- **(Bernal and Bès and Peris)** If $a_1, a_2 \in \mathbb{C}$ non-zero with $a_1 \neq a_2$, and $\tau_1(z) := z + a_1$ and $\tau_2(z) := z + a_2$, then C_{τ_1}, C_{τ_2} are d-hypercyclic on $H(\mathbb{C})$.

- **(Bernal)** If a_1 and a_2 are non-zero distinct points in \mathbb{D} and $\varphi_1(z) := \frac{z + a_1}{1 + \bar{a}_1 z}$ and $\varphi_2(z) := \frac{z + a_2}{1 + \bar{a}_2 z}$ are their respective non-Euclidean translations, then $C_{\varphi_1}, C_{\varphi_2}$ are d-hypercyclic on $H(\mathbb{D})$.
Problem 1

- If τ_1, τ_2 are distinct \mathbb{C}-automorphisms such that C_{τ_1} and C_{τ_2} are hypercyclic, then C_{τ_1}, C_{τ_2} are d-hypercyclic on $H(\mathbb{C})$.
Problem 1

- If \(\tau_1, \tau_2 \) are distinct \(\mathbb{C} \)-automorphisms such that \(C_{\tau_1} \) and \(C_{\tau_2} \) are hypercyclic, then \(C_{\tau_1}, C_{\tau_2} \) are d-hypercyclic on \(H(\mathbb{C}) \).

- If the \(\mathbb{D} \)-automorphisms \(\varphi_1(z) := \frac{z + a_1}{1 + \overline{a_1}z} \) and \(\varphi_2(z) := \frac{z + a_2}{1 + \overline{a_2}z} \) are distinct, then \(C_{\varphi_1}, C_{\varphi_2} \) are d-hypercyclic on \(H(\mathbb{D}) \).
Problem 1

- If τ_1, τ_2 are distinct \mathbb{C}-automorphisms such that C_{τ_1} and C_{τ_2} are hypercyclic, then C_{τ_1}, C_{τ_2} are d-hypercyclic on $H(\mathbb{C})$.

- If the \mathbb{D}-automorphisms $\varphi_1(z) := \frac{z+a_1}{1+a_1 z}$ and $\varphi_2(z) := \frac{z+a_2}{1+a_2 z}$ are distinct, then $C_{\varphi_1}, C_{\varphi_2}$ are d-hypercyclic on $H(\mathbb{D})$.

- **Problem 1**: (Bernal-González) Let C_{φ_1} and C_{φ_2} be generated by non-elliptic automorphisms. Must they be d-hypercyclic on X, where X is a subspace of $H(\mathbb{D})$?

Problem 2

- If T is invertible, then T is hypercyclic if and only if T^{-1} is.
Problem 2

- If \(T \) is invertible, then \(T \) is hypercyclic if and only if \(T^{-1} \) is.
- If \(T_1, T_2 \) are d-hypercyclic, then \(T_1^{-1} \oplus T_2^{-1} \) is hypercyclic.
Problem 2

- If \(T \) is invertible, then \(T \) is hypercyclic if and only if \(T^{-1} \) is.
- If \(T_1, T_2 \) are d-hypercyclic, then \(T_1^{-1} \oplus T_2^{-1} \) is hypercyclic
- **Problem 2**: (Bès and Peris) Let \(T_1, T_2 \) be d-hypercyclic and invertible. Must \(T_1^{-1}, T_2^{-1} \) be d-hypercyclic?

Problem 3: When are \(C_{\varphi_1}, C_{\varphi_2} \) d-hypercyclic if \(\varphi_1 \) and \(\varphi_2 \) are self maps of \(\mathbb{D} \)? When are they d-supercyclic?
The group $LFT(\hat{\mathbb{C}})$ of linear fractional transformations consists of bijections of the extended complex plane $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ that are in the form

$$\varphi(z) = \frac{az + b}{cz + d}$$

where $ad - bc \neq 0$.
The group $LFT(\hat{\mathbb{C}})$ of linear fractional transformations consists of bijections of the extended complex plane $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ that are in the form

$$\varphi(z) = \frac{az + b}{cz + d}$$

where $ad - bc \neq 0$.

$LFT(\mathbb{D}) = \{\varphi \in LFT(\hat{\mathbb{C}}) : \varphi(\mathbb{D}) \subset \mathbb{D}\}$ is the subgroup consisting of self maps of the unit disc.
The group $\text{LFT}(\hat{\mathbb{C}})$ of linear fractional transformations consists of bijections of the extended complex plane $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ that are in the form

$$\varphi(z) = \frac{az + b}{cz + d}$$

where $ad - bc \neq 0$.

- $\text{LFT}(\mathbb{D}) = \{\varphi \in \text{LFT}(\hat{\mathbb{C}}) : \varphi(\mathbb{D}) \subset \mathbb{D}\}$ is the subgroup consisting of self maps of the unit disc.
- $\text{Aut}(\mathbb{D}) = \{\varphi \in \text{LFT}(\hat{\mathbb{C}}) : \varphi(\mathbb{D}) = \mathbb{D}\}$ is the set of linear transformations that take \mathbb{D} onto itself. These are called automorphisms.
Fixed Points of Linear fractional Transformations

\[\alpha \in \mathbb{C} \text{ is a fixed point of } \varphi \in LFT(D) \text{ if } \varphi(\alpha) = \alpha. \]
Fixed Points of Linear fractional Transformations

- $\alpha \in \mathbb{C}$ is a fixed point of $\varphi \in LFT(\mathbb{D})$ if $\varphi(\alpha) = \alpha$.
- Members of $LFT(\mathbb{D})$, other than the identity, have at most two fixed points.
Fixed Points of Linear fractional Transformations

- $\alpha \in \mathbb{C}$ is a fixed point of $\varphi \in LFT(\mathbb{D})$ if $\varphi(\alpha) = \alpha$.
- Members of $LFT(\mathbb{D})$, other than the identity, have at most two fixed points.
- A fixed point of $\varphi \in LFT(\mathbb{D})$ is called **attractive** if the iterations
 \[\varphi[n](z) = (\varphi \circ \ldots \circ \varphi)(z) \to \alpha \]
 as $n \to \infty$ for all $z \in \mathbb{C}$.
Fixed Points of Linear fractional Transformations

- $\alpha \in \mathbb{C}$ is a fixed point of $\varphi \in LFT(\mathbb{D})$ if $\varphi(\alpha) = \alpha$.
- Members of $LFT(\mathbb{D})$, other than the identity, have at most two fixed points.
- A fixed point of $\varphi \in LFT(\mathbb{D})$ is called **attractive** if the iterations
 \[\varphi[n](z) = (\varphi \circ \ldots \circ \varphi)(z) \to \alpha \]
 as $n \to \infty$ for all $z \in \mathbb{C}$.
- A **repulsive** fixed point of $\varphi \in LFT(\mathbb{D})$ is the attractive fixed point of the inverse φ^{-1}.
Classification of $LFT(\hat{\mathbb{C}})$

- Let $\varphi \in LFT(\hat{\mathbb{C}})$. φ is called **parabolic** if it has one fixed point.
Classification of $LFT(\hat{\mathbb{C}})$

- Let $\varphi \in LFT(\hat{\mathbb{C}})$. φ is called **parabolic** if it has one fixed point.
- If φ has two fixed points, then it is conjugate to a mapping in the form $\psi(z) = \lambda z$ ($|\lambda| \geq 1$ and $\lambda \neq 1$).
Classification of $LFT(\hat{\mathbb{C}})$

- Let $\varphi \in LFT(\hat{\mathbb{C}})$. φ is called **parabolic** if it has one fixed point.
- If φ has two fixed points, then it is conjugate to a mapping in the form $\psi(z) = \lambda z$ ($|\lambda| \geq 1$ and $\lambda \neq 1$).
- Then φ is called:
 1. **Elliptic** if $|\lambda| = 1$,
 2. **Hyperbolic** if $\lambda > 1$, and
 3. **Loxodromic** if φ is neither elliptic nor parabolic.
Classification of $\text{LFT}(\mathbb{D})$ Depending on the Fixed Points

- **Parabolic** members of $\text{LFT}(\mathbb{D})$ have only one fixed point on $\partial \mathbb{D}$.
Classification of \(LFT(\mathbb{D}) \) Depending on the Fixed Points

- **Parabolic** members of \(LFT(\mathbb{D}) \) have only one fixed point on \(\partial \mathbb{D} \).

- **Hyperbolic** members of \(LFT(\mathbb{D}) \) have an attractive fixed point in the closure \(\overline{\mathbb{D}} \) and a repulsive fixed point outside of \(\mathbb{D} \). Indeed, both fixed points lie on \(\partial \mathbb{D} \) if and only if the map is a hyperbolic automorphism of \(\mathbb{D} \).
Classification of $LFT(\mathbb{D})$ Depending on the Fixed Points

- **Parabolic** members of $LFT(\mathbb{D})$ have only one fixed point on $\partial \mathbb{D}$.
- **Hyperbolic** members of $LFT(\mathbb{D})$ have an attractive fixed point in the closure $\overline{\mathbb{D}}$ and a repulsive fixed point outside of \mathbb{D}. Indeed, both fixed points lie on $\partial \mathbb{D}$ if and only if the map is a hyperbolic automorphism of \mathbb{D}.
- **Loxodromic** and **elliptic** members of $LFT(\mathbb{D})$ have a fixed point in \mathbb{D} and a fixed point outside of the closed unit disc.
We say that a function analytic on the unit disc (i.e. it is in $H(\mathbb{D})$)

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D})$$

belongs to the **Hardy space** $H^2(\mathbb{D})$ if its sequence of power series coefficients is square-summable:

$$H^2(\mathbb{D}) = \{ f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D}) : \sum_{n=0}^{\infty} |a_n|^2 < \infty \}.$$
(Bourdon, Shapiro, Ansari, Gallardo, and Montes) If C_φ is a composition operator with $\varphi \in LFT(D)$, then the following are equivalent:

1. C_φ is hypercyclic on $H^2(D)$.
2. C_φ is supercyclic on $H^2(D)$.
3. φ is either a parabolic automorphism or a hyperbolic map without a fixed point in D.
Weighted Dirichlet Spaces

\[S_\nu = \{ f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D}) : \sum_{n=0}^{\infty} |a_n|^2 (n+1)^{2\nu} < \infty \} \]

where \(\nu \in \mathbb{R} \).
Weighted Dirichlet Spaces

\[S_\nu = \{ f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D}) : \sum_{n=0}^{\infty} |a_n|^2(n+1)^{2\nu} < \infty \} \]

where \(\nu \in \mathbb{R} \).

\[S_0 \text{ is the Hardy space } H^2(\mathbb{D}). \]
Weighted Dirichlet Spaces

- \(S_\nu = \{ f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D}) : \sum_{n=0}^{\infty} |a_n|^2(n+1)^{2\nu} < \infty \} \)
 where \(\nu \in \mathbb{R} \).
- \(S_0 \) is the Hardy space \(H^2(\mathbb{D}) \).
- \(S_{-\frac{1}{2}} \) is the Bergman space.
Weighted Dirichlet Spaces

- $S_{\nu} = \{ f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D}) : \sum_{n=0}^{\infty} |a_n|^2 (n+1)^{2\nu} < \infty \}$
 where $\nu \in \mathbb{R}$.
- S_0 is the Hardy space $H^2(\mathbb{D})$.
- $S_{-\frac{1}{2}}$ is the Bergman space.
- $S_{\frac{1}{2}}$ is the Dirichlet space.
(Gallardo and Montes, 2004) Let \(\varphi \in LFT(\mathbb{D}) \). Then

- \(C_\varphi \) is hypercyclic on \(S_\nu \) iff \(\nu < \frac{1}{2} \) and \(C_\varphi \) is hypercyclic on \(H^2(\mathbb{D}) \).
(Gallardo and Montes, 2004) Let \(\varphi \in LFT(\mathbb{D}) \). Then

- \(C_\varphi \) is hypercyclic on \(S_\nu \) iff \(\nu < \frac{1}{2} \) and \(C_\varphi \) is hypercyclic on \(H^2(\mathbb{D}) \).
- If \(\nu < \frac{1}{2} \), then \(C_\varphi \) is supercyclic on \(S_\nu \) iff it is hypercyclic on \(S_\nu \).
Linear Fractional Hypercyclicity on S_ν

(Gallardo and Montes, 2004) Let $\varphi \in LFT(\mathbb{D})$. Then

- C_φ is hypercyclic on S_ν iff $\nu < \frac{1}{2}$ and C_φ is hypercyclic on $H^2(\mathbb{D})$.
- If $\nu < \frac{1}{2}$, then C_φ is supercyclic on S_ν iff it is hypercyclic on S_ν.
- C_φ is supercyclic on $S_{\frac{1}{2}}$ iff φ is a hyperbolic non-automorphism without a fixed point in \mathbb{D}.
Characterization of d-Hypercyclicity

Theorem: (J. Bès, Ö. M., and A. Peris) Let $\nu < \frac{1}{2}$ and $\varphi_1, \varphi_2 \in LFT(\mathbb{D})$. The following are equivalent:

1. $C_{\varphi_1}, C_{\varphi_2}$ are d-hypercyclic on S_ν.
2. $C_{\varphi_1}, C_{\varphi_2}$ are d-supercyclic on S_ν.
3. φ_1 and φ_2 are either parabolic automorphisms or hyperbolic maps without fixed points in \mathbb{D} and satisfy that if they have the same attractive fixed point α, the expression $\varphi_1'(\alpha) = \varphi_2'(\alpha) < 1$ does not occur.
Problem 1: (Bernal) Let C_{φ_1} and C_{φ_2} be generated by distinct non-elliptic automorphisms. Must they be d-hypercyclic on $H(\mathbb{D})$?

Problem 2: (Bès and Peris) Let T_1, T_2 be d-hypercyclic and invertible. Must T_1^{-1}, T_2^{-1} be d-hypercyclic?
Example

The hyperbolic maps $\varphi_j \in \text{Aut}(\mathbb{D})$ ($j = 1, 2$) given by

$$\varphi_1(z) = \frac{(3 + i)z - 1 - i}{(-1 + i)z + 3 - i} \quad \text{and} \quad \varphi_2(z) = \frac{(3 + 2i)z - 1 - 2i}{(-1 + 2i)z + 3 - 2i}$$

have the attractive fixed points $-i$ and $\frac{3}{5} - \frac{4}{5}i$, respectively, and have the same repellent fixed point 1. Thus, by the main theorem, $C_{\varphi_1}, C_{\varphi_2}$ are d-hypercyclic on S_ν ($\nu < \frac{1}{2}$), while $C_{\varphi_1}^{-1} = C_{\varphi_1}^{-1}$ and $C_{\varphi_2}^{-1} = C_{\varphi_2}^{-1}$ are not d-hypercyclic since

$$(\varphi_1^{-1})'(1) = (\varphi_2^{-1})'(1) = \frac{1}{2} < 1.$$
Problem: Let $\varphi_1, \varphi_2 \in LFT(\mathbb{D})$ be hyperbolic non-automorphisms without fixed points in \mathbb{D}. When are $C_{\varphi_1}, C_{\varphi_2}$ d-supercyclic on $S_{\frac{1}{2}}$?
Universality

(Birkhoff, 1929) There exists an entire function f and a sequence of \mathbb{C}-automorphisms $\tau_n(z) := z + a_n$ ($a_n \in \mathbb{C}$ with $|a_n| \to \infty$) for which the set

$$\{ C_{\tau_n}(f) : n \geq 1 \} = \{ f \circ \tau_n : n \geq 1 \}$$

is dense in $H(\mathbb{C})$.
Universality

- **(Birkhoff, 1929)** There exists an entire function \(f \) and a sequence of \(\mathbb{C} \)-automorphisms \(\tau_n(z) := z + a_n \) \((a_n \in \mathbb{C} \text{ with } |a_n| \to \infty)\) for which the set

\[
\{ C_{\tau_n}(f) : n \geq 1 \} = \{ f \circ \tau_n : n \geq 1 \}
\]

is dense in \(H(\mathbb{C}) \).

- **(Seidel and Walsh, 1941)** There exists a function \(f \) in \(H(\mathbb{D}) \) and a sequence of \(\mathbb{D} \)-automorphisms \(\phi_n(z) := \frac{z+a_n}{1+a_n z} \) \((a_n \in \mathbb{D} \text{ with } |a_n| \to 1)\) so that the set

\[
\{ C_{\phi_n}(f) : n \geq 1 \} = \{ f \circ \phi_n : n \geq 1 \}
\]

is dense in \(H(\mathbb{D}) \).
A sequence continuous linear transformations $(T_n)_{n=1}^\infty$ on a topological vector space X is said to be **hypercyclic** (or **universal**) provided there is some $f \in X$ so that the set

$$\{ T_n(f) : n \geq 1 \} = \{ T_1(f), T_2(f), \ldots \}$$

is dense in X.
A sequence continuous linear transformations \((T_n)_{n=1}^\infty\) on a topological vector space \(X\) is said to be **hypercyclic** (or **universal**) provided there is some \(f \in X\) so that the set
\[
\{ T_n(f) : n \geq 1 \} = \{ T_1(f), T_2(f), \ldots \}
\]
is dense in \(X\).

\((T_n)_{n=1}^\infty\) is said to be **supercyclic** provided there is some \(f \in X\) so that the projective orbit
\[
\{ \lambda T_n(f) : n \geq 0, \lambda \in \mathbb{C} \}
\]
is dense in \(X\).
Characterization of Compositional Hypercyclicity

(Bernal and Montes, 1995)
Let $\Omega \subset \mathbb{C}$ be a simply connected domain and $(\varphi_n) \in Aut(\Omega)^\mathbb{N}$. Then the following are equivalent:

1. (C_{φ_n}) is hypercyclic on $H(\Omega)$.
2. (φ_n) is a run-away sequence: For each compact $K \subset \Omega$, $\exists n \in \mathbb{N}$ so that $\varphi_n(K) \cap K = \emptyset$.
(Bernal, Bonilla, and Calderón, 2007)

$\varphi_n \in Aut(\Omega)^\mathbb{N}$ where $\Omega \neq \mathbb{C}$ simply connected. Then the following are equivalent:

1. (C_{φ_n}) is hypercyclic on $H(\Omega)$.
2. (C_{φ_n}) is supercyclic on $H(\Omega)$.
3. (φ_n) is run-away.
(Bernal, Bonilla, and Calderón, 2007)

If \(\{\varphi_n(z) := a_n z + b_n : n \geq 1\} \subset Aut(\mathbb{C}) \) and
\[0 < \inf |a_n| \leq \sup |a_n| < \infty, \]
then \((C_{\varphi_n}) \) is hypercyclic if and only if it is supercyclic.
Disjoint Sequences of Hypercyclic Operators

We say that \(N \geq 2 \) sequences of continuous linear operators \((T_{1,n}), \ldots, (T_{N,n})\) on a topological vector space \(X \) are
\textbf{d-hypercyclic (d-supercyclic)} provided that the sequence of the direct sums \((T_{1,n} \oplus \ldots \oplus T_{N,n})\) has a hypercyclic (supercyclic) vector on the diagonal of \(X^N \).
Compositional d-Hypercyclicity Equals d-Supercyclicity

Theorem: (J. Bès and Ö. M.) Let $(\varphi_{\ell,n}) \in Aut(\Omega)^\mathbb{N} \ (1 \leq \ell \leq N)$, Ω simply connected. TFAE:

1. $(C_{\varphi_{1,n}}), \ldots, (C_{\varphi_{N,n}})$ are d-hypercyclic on $H(\Omega)$.
2. $(C_{\varphi_{1,n}}), \ldots, (C_{\varphi_{N,n}})$ are d-supercyclic on $H(\Omega)$.
3. For each $K \in \Omega$ compact, $\exists n \in \mathbb{N}$ such that $K, \varphi_{1,n}(K), \ldots, \varphi_{N,n}(K)$ are pairwise disjoint.
Corollary: If \(\{ \varphi_n(z) := a_n z + b_n : n \geq 1 \} \subset Aut(\mathbb{C}) \), then the following are equivalent:

1. \((C_{\varphi_n})\) is hypercyclic on \(H(\mathbb{C}) \).
2. \((C_{\varphi_n})\) is supercyclic on \(H(\mathbb{C}) \).
3. \((\varphi_n)\) is run-away.
4. \(\sup_n \min\{|b_n|, |b_n/a_n|\} = \infty \).
Non-automorphic Symbols

Theorem: (J. Bès and Ö. M.) $\phi_{\ell, n} : \Omega \to \Omega$ holomorphic $(1 \leq \ell \leq N, n \in \mathbb{N})$. TFAE:

1. $(C_{\phi_{1,n}})_{n=1}^{\infty}, \ldots, (C_{\phi_{N,n}})_{n=1}^{\infty}$ are d-hypercyclic.
2. $\forall K \subset \Omega$ compact, $\exists n \in \mathbb{N}$
 - $K, \phi_{1,n}(K), \ldots, \phi_{N,n}(K)$ are pairwise disjoint.
 - Each map $\phi_{\ell,n}|_K : K \to \Omega$ is injective $(1 \leq \ell \leq N)$.

Case $N = 1$: (Grosse-Erdmann, Mortini, 2009).
Corollary: Let $\varphi_1, \varphi_2 \in LFT(\mathbb{D})$. The following are equivalent:

1. $C_{\varphi_1}, C_{\varphi_2}$ are d-hypercyclic on $H(\mathbb{D})$.
2. $C_{\varphi_1}, C_{\varphi_2}$ are d-supercyclic on $H(\mathbb{D})$.
3. φ_1 and φ_2 have no fixed points in \mathbb{D} and satisfy that if they have the same attractive fixed point α, then the expression $\varphi'_1(\alpha) = \varphi'_2(\alpha) < 1$ does not occur.
Corollary: Let $\varphi_1, \ldots, \varphi_N \in LFT(\mathbb{D})$ ($N \geq 2$). $C_{\varphi_1}, \ldots, C_{\varphi_N}$ are d-hypercyclic on $H(\mathbb{D})$ iff $\mu_1 C_{\varphi_1}, \ldots, \mu_N C_{\varphi_N}$ are d-hypercyclic on $H(\mathbb{D})$, for any non-zero scalars.
Linear Fractional Symbols

- **Corollary:** Let $\varphi_1, \ldots, \varphi_N \in LFT(\mathbb{D})$ ($N \geq 2$). $C_{\varphi_1}, \ldots, C_{\varphi_N}$ are d-hypercyclic on $H(\mathbb{D})$ iff $\mu_1 C_{\varphi_1}, \ldots, \mu_N C_{\varphi_N}$ are d-hypercyclic on $H(\mathbb{D})$, for any non-zero scalars.

- **Problem:** Let μ_1, \ldots, μ_N be scalars and $\varphi_1, \ldots, \varphi_N \in LFT(\mathbb{D})$ ($N \geq 2$). When are $\mu_1 C_{\varphi_1}, \ldots, \mu_N C_{\varphi_N}$ d-hypercyclic on S_ν?
References

Thanks

Thank you all for attending.