A Cauchy problem for a class of nonlocal and nonlinear equations arising in elasticity

Albert Erkip
Sabancı University

We will discuss the integro-differential Cauchy problem

$$u_{tt} = (\beta * (u + g(u)))_{xx} \quad x \in \mathbb{R}, \ t > 0$$
$$u(x, 0) = \phi(x), \quad u_t(x, 0) = \psi(x) \quad x \in \mathbb{R},$$

where β is some integrable function whose Fourier transform satisfies a growth condition of the form

$$0 \leq \hat{\beta}(\xi) \leq C (1 + \xi^2)^{-r/2}.$$

For certain choices of the convolution kernel β, the problem reduces to the well investigated Boussinesq type equations.

We prove general local well-posedness as well as global existence and blow-up results depending on β and on the behaviour of the nonlinear term $g(u)$.

The presentation is about the ongoing work, with Nilay Duruk (Sabancı University) and Hüsnü Ata Erbay (İşık University).