Abstract: A function \(f \) continuous on the real line \(\mathbb{R} \) is said to be operator Lipschitz if

\[
\|f(A) - f(B)\| \leq c \|A - B\|
\]

for all self-adjoint operators \(A \) and \(B \), where a number \(c \) depends on \(f \) only. Clearly, every operator Lipschitz function \(f \) satisfies the usual Lipschitz condition: \(|f(x) - f(y)| \leq c|x - y| \) for all \(x, y \in \mathbb{R} \). It is well known that the converse is not true.

I am going to present a short introduction to the theory of operator Lipschitz functions.