Growth Theorem and the Radius of Starlikeness of Close-to-Spirallike Functions

Melike Aydoğan

Yeni Yüzyıl University
Department of Computer Engineering

Abstract

Let A be the class of all analytic functions in the open unit disc $\mathbb{D} = \{ z \mid |z| < 1 \}$ of the form $f(z) = z + a_{2}z^{2} + a_{3}z^{3} + \cdots$. Let $g(z)$ be an element of A satisfying the condition $\text{Re} \left((e^{i\alpha}g'(z)) \right) > 0$ for some α, where $|\alpha| < \frac{\pi}{2}$. Then $g(z)$ is said to be α-spirallike. Such functions are known to be univalent in \mathbb{D}. Let $S^{*}(\alpha)$ denote the class of all functions $g(z)$ satisfying the above condition for a given α. A function $f(z) \in A$ is called close-to-α spirallike if there exists a function $g(z)$ in $S^{*}(\alpha)$ such that $\text{Re} \left(\left(\frac{f(z)}{g(z)} \right) \right) > 0$. The class of such functions is denoted by $S^{*}K(\alpha)$.

The aim of this talk is to give a growth theorem and the radius of starlikeness of the class $S^{*}K(\alpha)$.

This is joint work with Yaşar Polatoğlu and Arzu Şen.