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Abstract. Let B and T be two positive operators on a Banach lattice such that B is
compact-friendly and T is locally quasi-nilpotent. Introducing the concept of positive
quasi-similarity, we prove that T has a non-trivial closed invariant subspace provided
B is positively quasi-similar to T . This gives an affirmative answer to a problem of
Abramovich, Aliprantis and Burkinshaw with the commutativity condition replaced
by the positive quasi-similarity of the corresponding operators. The notion of strong
compact-friendliness is also introduced and relevant facts about it are discussed.

1. introduction

A result due to Y.A. Abramovich, C.D. Aliprantis and O. Burkinshaw [2] asserts that

a positive operator on a Banach lattice which is compact-friendly and locally quasi-

nilpotent has a non-trivial closed invariant subspace. Accordingly, it was stated in

[2] as an open problem whether both properties, namely being compact-friendly and

locally quasi-nilpotent, can be distributed between two commuting positive operators

B and T on a Banach lattice in order to ensure the existence of a B-invariant subspace,

or a T -invariant subspace, or a common invariant subspace for B and T . In this note,

we prove that the answer to this problem is affirmative if the commutativity condition

is replaced by the positive quasi-similarity of the corresponding operators. Moreover,

if the notion of positive quasi-similarity is used to modify the concept of compact-

friendliness, a class of positive operators lying properly between the classes of compact

and compact-friendly operators is obtained.

Throughout the paper the letters X and Y will denote infinite-dimensional Banach

spaces while E and F will be fixed infinite-dimensional Banach lattices. As usual,

L(X, Y ) stands for the algebra of all bounded linear operators between X and Y , and

L(X) := L(X,X).
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A subspace V of a Banach space X is called non-trivial if {0} 6= V 6= X. If V is a

subspace of a Banach lattice and if v ∈ V and |u| ≤ |v| imply u ∈ V , then V is called

an ideal.

An operator Q ∈ L(X, Y ) is a quasi-affinity if Q is one-to-one and has dense

range. An operator T ∈ L(X) is said to be a quasi-affine transform of an operator

S ∈ L(Y ) if there exists a quasi-affinity Q ∈ L(X, Y ) such that QT = SQ. If both T

and S are quasi-affine transforms of each other, the operators T ∈ L(X) and S ∈ L(Y )

are called quasi-similar and this is denoted by T
qs∼ S. The notion of quasi-similarity,

which can be easily verified to be an equivalence relation on the class of all operators,

was first introduced by B. Sz.-Nagy and C. Foiaş in connection with their work on the

harmonic analysis of operators on Hilbert space [12]. For more about this concept, see

[4, 6, 8, 9, 12].

An operator T on E is said to be dominated by a positive operator B on E, de-

noted by T ≺ B, provided |Tx| ≤ B|x| for each x ∈ E. A positive operator B on

E is said to be compact-friendly [1] if there is a positive operator that commutes

with B and dominates a non-zero operator which is dominated by a compact positive

operator. It is worth mentioning that the notion of compact-friendliness is of sub-

stance only on infinite-dimensional Banach lattices, since every positive operator on a

finite-dimensional Banach lattice is compact. Also, if B is compact, letting the three

operators appearing in the above definition equal to B, it is seen that compact oper-

ators are compact-friendly whilst the converse is not true as the identity operator on

an infinite-dimensional space shows. Lastly, it is straightforward to observe that every

power (even every polynomial with non-negative coefficients) of a compact-friendly

operator is also compact-friendly. A fairly complete treatment of compact-friendly

operators is given in [1, 2]. For all unexplained notation and terminology, we refer to

[1, 3, 10].

2. positive quasi-similarity

In analogy with the notion of quasi-similarity, we define the concept of positive

quasi-similarity.

Definition 2.1. Two positive operators S ∈ L(E) and T ∈ L(F ) are positively

quasi-similar, denoted by S
pqs∼ T , if there exist positive quasi-affinities P ∈ L(E,F )

and Q ∈ L(F,E) such that TP = PS and QT = SQ.
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The following auxiliary result, which is also of interest in itself, states that compact-

friendliness is well-behaved under the positive quasi-similarity relation. Before pro-

ceeding, let us point out that since positive operators between Banach lattices are

continuous, each operator dominated by a positive operator is automatically continu-

ous. This guarantees the non-triviality of an operator of the form QTP if P and Q

are positive quasi-affinities on E, whenever T is a non-trivial operator dominated by

a positive operator on E.

Lemma 2.2. Let B and T be two positive operators on E. If B is compact-friendly

and T is positively quasi-similar to B, then T is also compact-friendly.

Proof. Since T
pqs∼ B, there exist quasi-affinities P and Q such that BP = PT and

QB = TQ. As B is compact-friendly, there exist three non-zero operators R,K, and

C on E with R,K positive and K compact such that RB = BR, C ≺ R, and C ≺ K.

Therefore, it follows from RB = BR that BRP = RBP = RPT , which implies

QBRP = QRPT , which in turn implies that T (QRP ) = (QRP )T . On the other

hand, the dominations C ≺ R and C ≺ K yield QCP ≺ QRP and QCP ≺ QKP ,

respectively. It is, thus, enough to take R1 := QRP , K1 := QKP , and C1 := QCP as

the required three operators for the compact-friendliness of T . �

Remark 2.3. Lemma 2.2 shows that, although quasi-similarity need not preserve

compactness of an operator as shown by T.B. Hoover in [8, p. 683], positive quasi-

similarity does preserve compact-friendliness.

By means of the preceding lemma, we can now easily prove that the notion of positive

quasi-similarity is strong enough to guarantee an affirmative answer to the problem

mentioned in the title in the following form.

Theorem 2.4. Let B and T be two positive operators on E such that B is compact-

friendly and T is locally quasi-nilpotent at a non-zero positive element of E. If B
pqs∼ T ,

then T has a non-trivial closed invariant ideal.

Proof. Being also compact-friendly by Lemma 2.2, the locally quasi-nilpotent operator

T has a non-trivial closed invariant ideal by [1, Theorem 10.55]. �

Remark 2.5. It is easy to observe (cf. Lemma 3.2 (i) below) that an operator which

is quasi-similar to a compact operator necessarily commutes with a compact operator.

As is shown by C. Foiaş and C. Pearcy [6, Theorem 5], there exists a non-zero quasi-

nilpotent operator on `2 that does not commute with any non-zero compact operator,
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and hence is not quasi-similar to any compact operator. An example in the same spirit

for Banach lattices using positive quasi-similarity can also be provided: recall that

H.H. Schaefer constructed in [10, Example 2, pp. 262-264] an example of a positive

quasi-nilpotent operator T on a Banach lattice such that T has no non-trivial closed

invariant ideals. It follows from Lemma 2.2 and [1, Theorem 10.55] that T cannot be

positively quasi-similar to a non-zero compact-friendly operator.

3. strongly compact-friendly operators

Considering the existence of the non-commuting quasi-similar operators constructed by

T.B. Hoover mentioned in Remark 2.3 naturally suggests a modification of the notion

of compact-friendliness by replacing the commutativity condition with positive quasi-

similarity, which we introduce in the following definition. As Theorem 2.4 reveals,

such an approach could be useful in connection with the invariant subspace problem

for positive operators on Banach lattices.

Definition 3.1. A positive operator B on a Banach lattice E is called strongly

compact-friendly if there exist three non-zero operators R,K, and C on E with

R,K positive, K compact such that B
pqs∼ R, and C is dominated by both R and K.

One should be stressed that Lemma 2.2 still holds true if compact-friendliness of

operators is replaced by strong compact-friendliness since the positive quasi-similarity

relation is transitive.

Some examples and properties of strongly compact-friendly operators are presented

next.

Lemma 3.2. (i) If a positive operator B on E is positively quasi-similar to an op-

erator on E which is dominated by a positive compact operator or which dominates

a positive compact operator, then B is strongly compact-friendly, and the commutant

{B}′ of B contains an operator which is dominated by a positive compact operator or

which dominates a positive compact operator, respectively. In particular, every posi-

tive operator which is positively quasi-similar to a positive compact operator is strongly

compact-friendly and commutes with a positive compact operator.

(ii) A non-zero positive operator B on E is strongly compact-friendly if and only

if λB is strongly compact-friendly for some scalar λ > 0. However, B need not be

quasi-similar to λB for λ 6= 1.
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(iii) A positive compact perturbation of a positive operator on E is strongly compact-

friendly.

(iv) For every positive operator B on E, there exists a strongly compact-friendly

operator T on E which dominates B.

(v) If B ≥ I on E and {B}′ does not contain a non-zero compact operator, then

there exists a non-zero strongly compact-friendly, non-compact operator on E which is

not positively quasi-similar to B.

(vi) Positive kernel operators on order-complete Banach lattices are strongly compact-

friendly.

(vii) Every non-zero positive operator on `p (1 ≤ p < ∞) is strongly compact-

friendly.

Proof. (i) Let B ≥ 0 and B
pqs∼ T . Then there exist positive quasi-affinities P and Q

such that BP = PT and QB = TQ satisfying PTQ ∈ {B}′. If 0 ≤ K ≺ T , where

K is compact, then take R := T and C := K as the required three operators for the

strong compact-friendliness of T , and observe that 0 ≤ PKQ ≺ PTQ. If 0 ≤ T ≺ K,

where K is compact, then taking C = R := T suffices to establish that T is strongly

compact-friendly with 0 ≤ PTQ ≺ PKQ.

(ii) The first statement is trivial. Moreover, it is known [5, Theorem 4] that the

Volterra operator V on L2(0, 1) is not quasi-similar to λV for every λ 6= 1.

(iii) If K ≥ 0 compact and B ≥ 0, then K ≺ B + K, whence B + K is strongly

compact-friendly by (i).

(iv) If B ≥ 0, then take a rank-one positive operator K and use (iii) with T := B+K.

(v) If K is a non-zero positive compact operator, then the positive operator I+K is

not compact and is strongly compact-friendly by (iii). Observe that B
pqs∼ I+K implies

B−I pqs∼ K, from which it follows from the second part of (i) that the positive operator

B − I commutes with a compact operator, which in turn implies that B commutes

with a compact operator, contradicting that {B}′ does not contain a compact operator.

Thus, B is not positively quasi-similar to I +K.

(vi) The remark preceding Lemma 10.58 in [1] coupled with (i) justifies the assertion.

(vii) Let T be a non-zero positive operator on `p (1 ≤ p < ∞). Since T 6= 0, the

matrix of T must have at least one non-zero entry; replacing all the other entries by

zeros one gets a rank-one (and hence, compact) operator dominated by T , whence T

is strongly compact-friendly by (i). �
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We are now ready to determine the position of strongly compact-friendly operators

with respect to positive compact and compact-friendly operators on a Banach lattice.

Let us denote the sets of positive compact operators, strongly compact-friendly oper-

ators and compact-friendly operators on a Banach lattice E by K(E)+, SKF(E) and

KF(E), respectively.

Theorem 3.3. For an infinite-dimensional Banach lattice E, one has

K(E)+ ⊂ SKF(E) ⊂ KF(E)

and the inclusions are proper.

Proof. Since the positive quasi-similarity relation is reflexive, Lemma 3.2 (i) implies

that a compact operator on E is strongly compact-friendly; moreover, the positive

operator I + K, where K is a positive compact operator on E, is not compact but

is strongly compact-friendly by Lemma 3.2 (iii). Hence, the first proper inclusion is

proved. For the second inclusion, let B be strongly compact-friendly. Then, there

exist three non-zero operators R,K, and C on E with R,K positive and K compact

such that B
pqs∼ R, C ≺ R, and C ≺ K. Since B

pqs∼ R, there exist quasi-affinities P

and Q such that BP = PR and QB = RQ. Now taking R1 := PRQ, K1 := PKQ

and C1 := PCQ and observing that BR1 = B(PRQ) = BPQB = (PRQ)B = R1B

and that C1 ≺ R1 and C1 ≺ K1, one gets that the operators R1, K1 and C1 fulfill the

requirements needed for the compact-friendliness of B.

To finish the proof of the theorem, it remains only to show that the last inclusion is

proper. To see this, let Ω be a compact Hausdorff space without isolated points and

E := C(Ω). It is known that the identity operator I on E is compact-friendly. Assume

now that I is strongly compact-friendly with the corresponding three operators R,K,

and C, respectively. Now, a straightforward observation yields that the positive quasi-

similarity of I to R implies R = I, which brings the fact that the operator C is central.

Since E is an AM -space with unit, [1, Theorem 3.33] implies that C is a non-zero

multiplication operator. On the other hand, the domination of C by the compact

operator K reveals by [3, Theorem 5.13] that the non-zero multiplication operator C3

is compact, which we already know to be impossible by [1, Lemma 4.18] since Ω has

no isolated points. Thus, I is not strongly compact-friendly. �

The proof of the last part of Theorem 3.3, combined with Lemma 3.2 (i), shows

that a scalar operator on a C(Ω)-space, where Ω is a compact Hausdorff space without

isolated points, is an example of an operator which commutes with a (in fact, every)
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compact operator yet not positively quasi-similar to any non-zero compact operator,

not being strongly compact-friendly. This proves that the implication in the second

part of Lemma 3.2 (i) is generally not reversible.

Example 3.4. A strongly compact-friendly operator which is not polynomially com-

pact. We will use an example of an operator due to C. Foiaş and C. Pearcy (cf.

[6]). Let T : `2 → `2 be the backward weighted shift defined by Te0 = 0 and

Ten+1 = τnen, n ≥ 0, where (en)∞n=0 is the canonical basis of `2 and (τn)∞n=0 is the

sequence (
1

2
,

1

24
,
1

2
,

1

216
,
1

2
,

1

24
,
1

2
,

1

264
,
1

2
,

1

24
,
1

2
,

1

2256
, · · ·

)
.

Clearly, T is a positive non-compact operator; on the other hand, by Lemma 3.2 (vii),

T is strongly compact-friendly. An easy computation shows that ‖T n‖1/n → 0, that is,

T is quasi-nilpotent and hence is essentially quasi-nilpotent; moreover, by its definition,

it is readily seen that no power of T is compact. This implies by [7, Lemma 2] that T

is not polynomially compact. Note, for the sake of completeness, that the assertion of

the example can be improved: in the proof of Theorem 5 in [6] it was observed that

not only T is not polynomially compact, but T does not commute with a non-zero

compact operator.

We do not know whether every non-zero strongly compact-friendly operator on a Ba-

nach lattice has a non-trivial closed invariant subspace; but on a subclass of SKF(E),

we will show now that the assertion of [1, Theorem 10.55] still holds true without any

assumption of local quasi-nilpotence. Let us note that the phrase “Lomonosov theo-

rem,” below will be employed to operators on an arbitrary Banach lattice, being valid

due to [11, Corollary 2.4] for non-scalar bounded operators on real Banach lattices as

well as complex ones [1, Theorem 10.19].

Theorem 3.5. Let B be a positive operator on E. If B is positively quasi-similar to

a positive operator R on E which is dominated by a positive compact operator K on

E, then B has a non-trivial closed invariant subspace. Moreover, for each sequence

(Tn)n∈N in {B}′, there exists a non-trivial closed subspace that is invariant under B

and under each Tn.

Proof. Our argument is similar to the one in [1] and uses the properties of quasi-

affinities. Without loss of generality, we may assume that the operator B is not scalar,

in which case the assertion holds trivially. Clearly, B is strongly compact-friendly by
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Lemma 3.2 (i) with the corresponding quasi-affinities and the three operators, say,

P,Q,R,K and C, respectively. Also, it follows from the proof of the second inclusion

in Theorem 3.3 that using the operators R1 := PRQ ≥ 0, K1 := PKQ ≥ 0 and

C1 := PCQ, the operator B becomes compact-friendly since we have BR1 = R1B,

C1 ≺ R1, and C1 ≺ K1.

Now, if Ker R1 is non-trivial, then Ker R1 is a non-trivial closed R1-hyperinvariant

subspace of E whence it is a non-trivial closed B-invariant subspace since B commutes

with R1, and we are done.

Assume now that Ker R1 is trivial, from which it follows that the operator R1 is

non-trivial, yielding that the operator R3
1 is non-trivial, too. As 0 ≤ R1 ≺ K1, [3,

Theorem 5.13] implies that R3
1 is compact. That B has a non-trivial closed hyperin-

variant subspace now follows, by virtue of Lomonosov’s theorem, from the fact that B

commutes with the compact operator R3
1, since B commutes with R1.

The only assertion left, then, is to show that if Ker R1 is non-trivial, then there exists

not only an R1-hyperinvariant subspace but a non-trivial closed subspace of E that is

B-invariant and Tn-invariant for each n. Without loss of generality, we can suppose

that ‖B‖ < 1. Pick arbitrary scalars αn > 0 that are small enough to guarantee that

the positive operator T :=
∑∞

n=1 αnTn exists and ‖B + T‖ < 1. Clearly, BT = TB.

Define the operator A :=
∑∞

n=1(B+T )n, and notice that A ≥ 0, AB = BA, AT = TA,

and Ax ≥ x for all x ≥ 0.

For each x > 0, denote by Jx the principal ideal generated by Ax; that is

Jx := {y ∈ E | |y| ≤ λAx for some λ > 0}.

Since x ≤ Ax, we have that x ∈ Jx, so this is a non-zero ideal.

Note that Jx is (B+T )-invariant: because, if y ∈ Jx, then |y| ≤ λAx for some λ > 0

and hence

|(B + T )y| ≤ (B + T )|y| ≤ λ(B + T )
∞∑

n=0

(B + T )nx = λ
∞∑

n=1

(B + T )nx ≤ λAx.

It is also clear that Jx is also invariant under B and T , since B is positive and is

dominated by B+T . In case where there exists a positive x ∈ E such that the ideal Jx

is not norm-dense in E, the proof is complete. So, suppose that Ax is a quasi-interior

point in E for each x > 0.

Since C 6= 0 we have C1 6= 0, so there exists some x1 > 0 such that C1x1 6= 0.

Then A|C1x1| is a quasi-interior point satisfying A|C1x1| ≥ |C1x1|. By [1, Lemma 4.16

(i)] there exists an operator M1 ∈ L(E) dominated by the identity operator such that
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x2 := M1C1x1 > 0. Let π1 := M1C1. Note that π1 is dominated by R1 and hence by

K1.

Now we have Jx2 = E, and since C1 6= 0 there exists 0 < y ≤ Ax2 such that

C1y 6= 0. Since Ax2 is a quasi-interior point, it follows from [1, Lemma 4.16 (ii)]

that there is an operator M ∈ L(E) dominated by the identity operator such that

MAx2 = y. Notice that A|C1y| is a quasi-interior point. As |C1y| ≤ A|C1y|, it follows

from [1, Lemma 4.16 (i)] that there exists M2 ∈ L(E) dominated by the identity

operator such that x3 := M2C1y = M2C1MAx2 > 0. Put π2 := M2C1MA and observe

that π2 is dominated by R1A and hence by K1A. Repeating once more the preceding

argument with x2 replaced by x3, we then obtain π3 ∈ L(E) such that π3x3 > 0 and

π3 is dominated by R1A whence by K1A. From π3π2π1x1 = π3x3 > 0, we see that

π3π2π1 6= 0.

Set S := R1AR1AR1 ≥ 0. Since |π3π2π1x| ≤ S|x| for each x ∈ E, it follows that

S 6= 0. Moreover, since K1 is compact and dominates R1, that A is positive, and

that S = (R1A)(R1A)R1 ≺ (K1A)(K1A)K1, we have by [3, Theorem 5.14] that S is

compact. Lastly, because A and R1 commute with B, so does S. Thus, B commutes

with a non-zero compact operator, and hence has a non-trivial closed hyperinvariant

subspace by Lomonosov’s theorem. The proof of the theorem is now complete. �

Finally, we want to conclude with a problem related to the main subject matter of

this article. It has become clear that the quasi-similarity relation is too intricate to

establish a link between strong compact-friendliness and commutativity. Considering

Theorem 3.3, the following question sounds then meaningful.

QUESTION: Let B and R be two commuting positive operators on E such that B is

strongly compact-friendly and R is locally quasi-nilpotent at some non-zero positive

vector in E. Does there exist a non-trivial closed B-invariant subspace, or an R-

invariant subspace, or a common invariant subspace for B and R?
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