Abstract: As is well-known, a continuous image of a separable and completely metrizable space is called in Topology as analytic set or analytic space. The following theorems are basic:

Baire-Alexandroff Theorem (1929): A topological space X is homeomorphic to \mathbb{P} iff X is a separable, 0-dimensional and metrizable space which is an absolute $G_δ$ having no compact open subset.

Hausdorff Theorem (1932): A metric space is an analytic set iff it is a continuous image of \mathbb{P}.

In the above setting, \mathbb{P} denotes the irrationals with the standard subspace topology obtained from \mathbb{R}^1. We will give a detailed proof in this talk of the following well-known theorem of Ernest Michael and Arthur H. Stone from 1969:

The Main Theorem: Every analytic set is actually an image of \mathbb{P} under a quotient mapping.