Open problems References

## Invariant subspaces of compact-friendly-like operators: the state-of-the-art and some open problems

Mert Çağlar İstanbul Kültür University

İstanbul Analysis Seminars

December 9, 2011 (joint work with Tunç Mısırlıoğlu)

## Outline

## **Overview**

- Banach spaces and the Invariant Subspace Problem
- Lomonosov's Theorem and its consequences

## Ordered Banach spaces and operators on them

- Odds and ends
- Compact-friendly operators

## 3 Compact-friendly-like operators

- Positive quasi-similarity and strong compact-friendliness
- Super right-commutants and weak compact-friendliness
- Banach lattices with topologically full center



Banach spaces and the Invariant Subspace Problem

Fix a Banach space X and  $T \in \mathcal{L}(X)$ . A subspace V of X is called **non-trivial** if  $\{0\} \neq V \neq X$ . If  $TV \subseteq V$ , then V is called a *T*-invariant subspace. If V is S-invariant for every S in the commutant

$$\{T\}' := \{S \in \mathcal{L}(X) \mid ST = TS\}$$

of *T*, then *V* is called a *T*-hyperinvariant subspace.

### The Invariant Subspace Problem

When does a bounded operator on a Banach space have a non-trivial closed invariant subspace?

Banach spaces and the Invariant Subspace Problem

Fix a Banach space X and  $T \in \mathcal{L}(X)$ . A subspace V of X is called **non-trivial** if  $\{0\} \neq V \neq X$ . If  $TV \subseteq V$ , then V is called a *T*-invariant subspace. If V is S-invariant for every S in the commutant

$$\{T\}' := \{S \in \mathcal{L}(X) \mid ST = TS\}$$

of *T*, then *V* is called a *T*-hyperinvariant subspace.

### The Invariant Subspace Problem

When does a bounded operator on a Banach space have a non-trivial closed invariant subspace?

References

Banach spaces and the Invariant Subspace Problem

An operator  $T : X \to Y$  between normed spaces is called **compact** if  $\overline{TX_1}$  is a compact set in *Y*, where  $X_1$  is the closed unit ball of *X*. The family of all compact operators from *X* to *Y* is denoted by  $\mathcal{K}(X, Y)$ , and one defines  $\mathcal{K}(X) := \mathcal{K}(X, X)$ .

- quasi-nilpotent if  $r(T) = \lim_{n \to \infty} ||T^n||^{1/n} = 0$ ,
- locally quasi-nilpotent at a vector x in X if  $r_T(x) := \lim_{n \to \infty} ||T^n x||^{1/n} = 0$ ,
- essentially quasi-nilpotent if  $r_{ess}(T) := r(\pi(T)) = 0$ , where  $\pi : \mathcal{L}(X) \to \mathfrak{C}(X)$  is the quotient map of  $\mathcal{L}(X)$  onto the Calkin algebra  $\mathfrak{C}(X) := \mathcal{L}(X)/\mathcal{K}(X)$ .

Banach spaces and the Invariant Subspace Problem

An operator  $T : X \to Y$  between normed spaces is called **compact** if  $\overline{TX_1}$  is a compact set in *Y*, where  $X_1$  is the closed unit ball of *X*. The family of all compact operators from *X* to *Y* is denoted by  $\mathcal{K}(X, Y)$ , and one defines  $\mathcal{K}(X) := \mathcal{K}(X, X)$ .

- quasi-nilpotent if  $r(T) = \lim_{n \to \infty} ||T^n||^{1/n} = 0$ ,
- locally quasi-nilpotent at a vector x in X if  $r_T(x) := \lim_{n \to \infty} ||T^n x||^{1/n} = 0$ ,
- essentially quasi-nilpotent if  $r_{ess}(T) := r(\pi(T)) = 0$ , where  $\pi : \mathcal{L}(X) \to \mathfrak{C}(X)$  is the quotient map of  $\mathcal{L}(X)$  onto the Calkin algebra  $\mathfrak{C}(X) := \mathcal{L}(X)/\mathcal{K}(X)$ .

References

Banach spaces and the Invariant Subspace Problem

An operator  $T : X \to Y$  between normed spaces is called **compact** if  $\overline{TX_1}$  is a compact set in *Y*, where  $X_1$  is the closed unit ball of *X*. The family of all compact operators from *X* to *Y* is denoted by  $\mathcal{K}(X, Y)$ , and one defines  $\mathcal{K}(X) := \mathcal{K}(X, X)$ .

- quasi-nilpotent if  $r(T) = \lim_{n \to \infty} ||T^n||^{1/n} = 0$ ,
- locally quasi-nilpotent at a vector x in X if  $r_T(x) := \lim_{n \to \infty} ||T^n x||^{1/n} = 0$ ,
- essentially quasi-nilpotent if  $r_{ess}(T) := r(\pi(T)) = 0$ , where  $\pi : \mathcal{L}(X) \to \mathfrak{C}(X)$  is the quotient map of  $\mathcal{L}(X)$  onto the Calkin algebra  $\mathfrak{C}(X) := \mathcal{L}(X)/\mathcal{K}(X)$ .

References

Banach spaces and the Invariant Subspace Problem

An operator  $T : X \to Y$  between normed spaces is called **compact** if  $\overline{TX_1}$  is a compact set in *Y*, where  $X_1$  is the closed unit ball of *X*. The family of all compact operators from *X* to *Y* is denoted by  $\mathcal{K}(X, Y)$ , and one defines  $\mathcal{K}(X) := \mathcal{K}(X, X)$ .

- quasi-nilpotent if  $r(T) = \lim_{n \to \infty} ||T^n||^{1/n} = 0$ ,
- locally quasi-nilpotent at a vector x in X if  $r_T(x) := \lim_{n \to \infty} ||T^n x||^{1/n} = 0$ ,
- essentially quasi-nilpotent if  $r_{ess}(T) := r(\pi(T)) = 0$ , where  $\pi : \mathcal{L}(X) \to \mathfrak{C}(X)$  is the quotient map of  $\mathcal{L}(X)$  onto the Calkin algebra  $\mathfrak{C}(X) := \mathcal{L}(X)/\mathcal{K}(X)$ .

## A **non-scalar** operator is one which is not a multiple of the identity.

## Theorem (V. Lomonosov–1973)

If an operator  $T : X \to X$  on a complex Banach space commutes with a non-scalar operator  $S \in \mathcal{L}(X)$  which in turn commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace.

## Corollary

If a non-scalar operator T on a complex Banach space commutes with a non-zero compact operator, then T has a non-trivial closed hyperinvariant subspace.

A **non-scalar** operator is one which is not a multiple of the identity.

## Theorem (V. Lomonosov–1973)

If an operator  $T : X \to X$  on a complex Banach space commutes with a non-scalar operator  $S \in \mathcal{L}(X)$  which in turn commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace.

## Corollary

If a non-scalar operator T on a complex Banach space commutes with a non-zero compact operator, then T has a non-trivial closed hyperinvariant subspace.

A **non-scalar** operator is one which is not a multiple of the identity.

## Theorem (V. Lomonosov–1973)

If an operator  $T : X \to X$  on a complex Banach space commutes with a non-scalar operator  $S \in \mathcal{L}(X)$  which in turn commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace.

## Corollary

If a non-scalar operator T on a complex Banach space commutes with a non-zero compact operator, then T has a non-trivial closed hyperinvariant subspace.

An operator  $T \in \mathcal{L}(X)$  is a **Lomonosov operator** if there is an operator  $S \in \mathcal{L}(X)$  such that:

- *S* is a non-scalar operator.
- S commutes with T.
- S commutes with a non-zero compact operator.

### Lomonosov's Theorem redux

*Every Lomonosov operator on a complex Banach space has a non-trivial closed invariant subspace.* 

But not vice versa: not every operator with a non-trivial closed invariant subspace is a Lomonosov operator (D.W. Hadwin, E.A. Nordgren, H. Radjavi & P. Rosenthal-1980).

An operator  $T \in \mathcal{L}(X)$  is a **Lomonosov operator** if there is an operator  $S \in \mathcal{L}(X)$  such that:

- *S* is a non-scalar operator.
- S commutes with T.
- S commutes with a non-zero compact operator.

## Lomonosov's Theorem redux

Every Lomonosov operator on a complex Banach space has a non-trivial closed invariant subspace.

But not vice versa: not every operator with a non-trivial closed invariant subspace is a Lomonosov operator (D.W. Hadwin, E.A. Nordgren, H. Radjavi & P. Rosenthal-1980).

An operator  $T \in \mathcal{L}(X)$  is a **Lomonosov operator** if there is an operator  $S \in \mathcal{L}(X)$  such that:

- *S* is a non-scalar operator.
- S commutes with T.
- *S* commutes with a non-zero compact operator.

## Lomonosov's Theorem redux

Every Lomonosov operator on a complex Banach space has a non-trivial closed invariant subspace.

But not vice versa: not every operator with a non-trivial closed invariant subspace is a Lomonosov operator (D.W. Hadwin, E.A. Nordgren, H. Radjavi & P. Rosenthal–1980).

| Overview | Ordered Banach spaces and operators on them |
|----------|---------------------------------------------|
|          | •••••                                       |

- A Banach lattice is a real Banach space E equipped with a partial order ≤, which makes E into a lattice in the algebraic sense and which is compatible with the linear and the norm structures.
- Complex Banach lattices are obtained via complexification of real ones.
- All classical Banach spaces are Banach lattices under their natural orderings and norms.
- For a Banach lattice E, the set

$$E^+ := \{x \in E \mid x \ge 0\}$$

| Overview | Ordered Banach spaces and operators on them |
|----------|---------------------------------------------|
|          | •••••                                       |

- A Banach lattice is a real Banach space E equipped with a partial order ≤, which makes E into a lattice in the algebraic sense and which is compatible with the linear and the norm structures.
- Complex Banach lattices are obtained via complexification of real ones.
- All classical Banach spaces are Banach lattices under their natural orderings and norms.
- For a Banach lattice E, the set

$$E^+ := \{x \in E \mid x \ge 0\}$$

| Overview | Ordered Banach spaces and operators on them |
|----------|---------------------------------------------|
|          | ••••••                                      |

- A Banach lattice is a real Banach space E equipped with a partial order ≤, which makes E into a lattice in the algebraic sense and which is compatible with the linear and the norm structures.
- Complex Banach lattices are obtained via complexification of real ones.
- All classical Banach spaces are Banach lattices under their natural orderings and norms.
- For a Banach lattice E, the set

$$E^+ := \{x \in E \mid x \ge 0\}$$

| Overview | Ordered Banach spaces and operators on them |
|----------|---------------------------------------------|
|          | ••••••                                      |

- A Banach lattice is a real Banach space E equipped with a partial order ≤, which makes E into a lattice in the algebraic sense and which is compatible with the linear and the norm structures.
- Complex Banach lattices are obtained via complexification of real ones.
- All classical Banach spaces are Banach lattices under their natural orderings and norms.
- For a Banach lattice E, the set

$$E^+ := \{x \in E \mid x \ge 0\}$$

| Overview<br>0000 | Ordered Banach spaces and operators on them | Compact-friendly-like operators | Open problems | Refer |
|------------------|---------------------------------------------|---------------------------------|---------------|-------|
|                  |                                             |                                 |               |       |

 The infimum and the supremum operations ∧ and ∨ in a Banach lattice *E* generate the positive elements

$$x^+ := x \lor 0, \quad x^- := (-x) \lor 0, \quad |x| := x \lor (-x),$$

for which the identities

$$x = x^+ - x^-, \quad |x| = x^+ + x^-, \quad x^+ \wedge x^- = 0$$

## hold for every x in E.

• If *V* is a subspace of a Banach lattice and if  $v \in V$  and  $|u| \leq |v|$  imply  $u \in V$ , then *V* is called an **ideal**.

| Overview<br>0000 | Ordered Banach spaces and operators on them | Compact-friendly-like operators | Open problems | Ref |
|------------------|---------------------------------------------|---------------------------------|---------------|-----|
| Odds and ends    |                                             |                                 |               |     |

 The infimum and the supremum operations ∧ and ∨ in a Banach lattice *E* generate the positive elements

$$x^+ := x \lor 0, \quad x^- := (-x) \lor 0, \quad |x| := x \lor (-x),$$

for which the identities

$$x = x^+ - x^-, \quad |x| = x^+ + x^-, \quad x^+ \wedge x^- = 0$$

hold for every x in E.

• If *V* is a subspace of a Banach lattice and if  $v \in V$  and  $|u| \leq |v|$  imply  $u \in V$ , then *V* is called an **ideal**.

| Overview | Ordered Banach spaces and operators on them |
|----------|---------------------------------------------|
|          | 000000000                                   |

- A linear operator *T* : *E* → *F* between Banach lattices is called **positive** and is denoted by *T* ≥ 0 if *TE*<sup>+</sup> ⊆ *F*<sup>+</sup>. The family of positive operators from *E* to *F* is denoted by *L*(*E*, *F*)<sub>+</sub>.
- The family  $\mathcal{L}(E, F)$  becomes an ordered vector space with  $\mathcal{L}(E, F)_+$  being its positive cone by declaring

 $T \ge S$  whenever  $T - S \ge 0$ .

An operator *T* on *E* is said to be **dominated** by a positive operator *B* on *E*, denoted by *T* ≺ *B*, provided

 $|Tx| \leq B|x|$ 

for each  $x \in E$ .

| Overview | Ordered Banach spaces and operators on them |
|----------|---------------------------------------------|
|          | 000000000                                   |

- A linear operator *T* : *E* → *F* between Banach lattices is called **positive** and is denoted by *T* ≥ 0 if *TE*<sup>+</sup> ⊆ *F*<sup>+</sup>. The family of positive operators from *E* to *F* is denoted by *L*(*E*, *F*)<sub>+</sub>.
- The family L(E, F) becomes an ordered vector space with L(E, F)<sub>+</sub> being its positive cone by declaring

 $T \ge S$  whenever  $T - S \ge 0$ .

An operator *T* on *E* is said to be **dominated** by a positive operator *B* on *E*, denoted by *T* ≺ *B*, provided

 $|Tx| \leq B|x|$ 

for each  $x \in E$ .

| Overview | Ordered Banach spaces and operators on them |
|----------|---------------------------------------------|
|          | 000000000                                   |

- A linear operator *T* : *E* → *F* between Banach lattices is called **positive** and is denoted by *T* ≥ 0 if *TE*<sup>+</sup> ⊆ *F*<sup>+</sup>. The family of positive operators from *E* to *F* is denoted by *L*(*E*, *F*)<sub>+</sub>.
- The family L(E, F) becomes an ordered vector space with L(E, F)<sub>+</sub> being its positive cone by declaring

$$T \ge S$$
 whenever  $T - S \ge 0$ .

An operator *T* on *E* is said to be **dominated** by a positive operator *B* on *E*, denoted by *T* ≺ *B*, provided

 $|Tx| \leq B|x|$ 

for each  $x \in E$ .

- An operator on *E* which is dominated by a multiple of the identity operator is called a **central operator**. The collection of all central operators on *E* is denoted by *Z*(*E*) and is referred to as the **center** of the Banach lattice *E*.
- An operator *T* : *E* → *F* is said to be *AM*-compact, provided that *T* maps order bounded sets to norm-precompact sets. Each compact operator is necessarily *AM*-compact.

- An operator on *E* which is dominated by a multiple of the identity operator is called a **central operator**. The collection of all central operators on *E* is denoted by *Z*(*E*) and is referred to as the **center** of the Banach lattice *E*.
- An operator *T* : *E* → *F* is said to be *AM*-compact, provided that *T* maps order bounded sets to norm-precompact sets. Each compact operator is necessarily *AM*-compact.

## The ISP for positive operators on Banach lattices

Does every positive operator on an infinite-dimensional, separable Banach lattice have a non-trivial closed invariant subspace?

**Notation:** Throughout, the letters X and Y will denote infinite-dimensional Banach spaces while E and F will be fixed infinite-dimensional Banach lattices.

## The ISP for positive operators on Banach lattices

Does every positive operator on an infinite-dimensional, separable Banach lattice have a non-trivial closed invariant subspace?

**Notation:** Throughout, the letters X and Y will denote infinite-dimensional Banach spaces while E and F will be fixed infinite-dimensional Banach lattices.

## Compact-friendliness (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1994)

A positive operator B on E is said to be **compact-friendly** if there is a positive operator that commutes with B and dominates a non-zero operator which is dominated by a compact positive operator.

In other words, a positive operator *B* on *E* is compact-friendly if there exist three non-zero operators  $R, K, C : E \to E$  such that R, K are positive, *K* is compact, RB = BR, and for each  $x \in E$  one has

 $|Cx| \leq R|x|$  and  $|Cx| \leq K|x|$ .

## Compact-friendliness (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1994)

A positive operator B on E is said to be **compact-friendly** if there is a positive operator that commutes with B and dominates a non-zero operator which is dominated by a compact positive operator.

In other words, a positive operator *B* on *E* is compact-friendly if there exist three non-zero operators  $R, K, C : E \to E$  such that R, K are positive, *K* is compact, RB = BR, and for each  $x \in E$  one has

 $|Cx| \leq R|x|$  and  $|Cx| \leq K|x|$ .

- Compact positive operators: if  $B \ge 0$  is compact, then take R = K = C := B in the definition.
- The identity operator: having fixed an arbitrary non-zero compact positive operator *K*, set *R* = *C* := *K* (which also shows that a compact-friendly operator need not be compact).
- Every power (even every polynomial with non-negative coefficients) of a compact-friendly operator.
- Positive operators that commute with a non-zero positive compact operator.
- Positive operators that dominate or that are dominated by non-zero positive compact operators.
- Positive integral operators.

- Compact positive operators: if  $B \ge 0$  is compact, then take R = K = C := B in the definition.
- The identity operator: having fixed an arbitrary non-zero compact positive operator K, set R = C := K (which also shows that a compact-friendly operator need not be compact).
- Every power (even every polynomial with non-negative coefficients) of a compact-friendly operator.
- Positive operators that commute with a non-zero positive compact operator.
- Positive operators that dominate or that are dominated by non-zero positive compact operators.
- Positive integral operators.

- Compact positive operators: if  $B \ge 0$  is compact, then take R = K = C := B in the definition.
- The identity operator: having fixed an arbitrary non-zero compact positive operator K, set R = C := K (which also shows that a compact-friendly operator need not be compact).
- Every power (even every polynomial with non-negative coefficients) of a compact-friendly operator.
- Positive operators that commute with a non-zero positive compact operator.
- Positive operators that dominate or that are dominated by non-zero positive compact operators.
- Positive integral operators.

- Compact positive operators: if  $B \ge 0$  is compact, then take R = K = C := B in the definition.
- The identity operator: having fixed an arbitrary non-zero compact positive operator K, set R = C := K (which also shows that a compact-friendly operator need not be compact).
- Every power (even every polynomial with non-negative coefficients) of a compact-friendly operator.
- Positive operators that commute with a non-zero positive compact operator.
- Positive operators that dominate or that are dominated by non-zero positive compact operators.
- Positive integral operators.

- Compact positive operators: if  $B \ge 0$  is compact, then take R = K = C := B in the definition.
- The identity operator: having fixed an arbitrary non-zero compact positive operator K, set R = C := K (which also shows that a compact-friendly operator need not be compact).
- Every power (even every polynomial with non-negative coefficients) of a compact-friendly operator.
- Positive operators that commute with a non-zero positive compact operator.
- Positive operators that dominate or that are dominated by non-zero positive compact operators.
- Positive integral operators.

- Compact positive operators: if  $B \ge 0$  is compact, then take R = K = C := B in the definition.
- The identity operator: having fixed an arbitrary non-zero compact positive operator K, set R = C := K (which also shows that a compact-friendly operator need not be compact).
- Every power (even every polynomial with non-negative coefficients) of a compact-friendly operator.
- Positive operators that commute with a non-zero positive compact operator.
- Positive operators that dominate or that are dominated by non-zero positive compact operators.
- Positive integral operators.

# A continuous function $\varphi : \Omega \to \mathbb{R}$ , where $\Omega$ is a topological space, has a **flat** if there exists a non-empty open set $\Omega_0$ in $\Omega$ such that $\varphi$ is constant on $\Omega_0$ .

If  $\Omega$  is a compact Hausdorff space, then each  $\varphi \in \mathcal{C}(\Omega)$ generates the **multiplication operator**  $M_{\varphi} : \mathcal{C}(\Omega) \to \mathcal{C}(\Omega)$ defined for each  $f \in \mathcal{C}(\Omega)$  by

$$M_{\varphi}f=\varphi f.$$

The function  $\varphi$  is called the **multiplier** of  $M_{\varphi}$ .

A multiplication operator  $M_{\varphi}$  is positive if and only if the multiplier  $\varphi$  is positive.
A continuous function  $\varphi : \Omega \to \mathbb{R}$ , where  $\Omega$  is a topological space, has a **flat** if there exists a non-empty open set  $\Omega_0$  in  $\Omega$  such that  $\varphi$  is constant on  $\Omega_0$ .

If  $\Omega$  is a compact Hausdorff space, then each  $\varphi \in \mathcal{C}(\Omega)$ generates the **multiplication operator**  $M_{\varphi} : \mathcal{C}(\Omega) \to \mathcal{C}(\Omega)$ defined for each  $f \in \mathcal{C}(\Omega)$  by

$$M_{\varphi}f=\varphi f.$$

The function  $\varphi$  is called the **multiplier** of  $M_{\varphi}$ .

A multiplication operator  $M_{\varphi}$  is positive if and only if the multiplier  $\varphi$  is positive.

A continuous function  $\varphi : \Omega \to \mathbb{R}$ , where  $\Omega$  is a topological space, has a **flat** if there exists a non-empty open set  $\Omega_0$  in  $\Omega$  such that  $\varphi$  is constant on  $\Omega_0$ .

If  $\Omega$  is a compact Hausdorff space, then each  $\varphi \in \mathcal{C}(\Omega)$ generates the **multiplication operator**  $M_{\varphi} : \mathcal{C}(\Omega) \to \mathcal{C}(\Omega)$ defined for each  $f \in \mathcal{C}(\Omega)$  by

$$M_{\varphi}f=\varphi f.$$

The function  $\varphi$  is called the **multiplier** of  $M_{\varphi}$ .

A multiplication operator  $M_{\varphi}$  is positive if and only if the multiplier  $\varphi$  is positive.

# Theorem (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1997)

A positive multiplication operator  $M_{\varphi}$  on a  $C(\Omega)$ -space, where  $\Omega$  is a compact Hausdorff space, is compact-friendly if and only if the multiplier  $\varphi$  has a flat.

Apart from its counterparts, this is the only known characterization of compact-friendliness on a concrete Banach lattice. A similar characterization of compact-friendly multiplication operators on  $L_p$ -spaces was obtained by Y.A. Abramovich, C.D. Aliprantis, O. Burkinshaw and A.W. Wickstead in 1998. G. Sirotkin has managed to extend the latter to arbitrary Banach function spaces in 2002.

# Theorem (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1997)

A positive multiplication operator  $M_{\varphi}$  on a  $C(\Omega)$ -space, where  $\Omega$  is a compact Hausdorff space, is compact-friendly if and only if the multiplier  $\varphi$  has a flat.

Apart from its counterparts, this is the only known characterization of compact-friendliness on a concrete Banach lattice. A similar characterization of compact-friendly multiplication operators on  $L_p$ -spaces was obtained by Y.A. Abramovich, C.D. Aliprantis, O. Burkinshaw and A.W. Wickstead in 1998. G. Sirotkin has managed to extend the latter to arbitrary Banach function spaces in 2002.

# Theorem (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1997)

A positive multiplication operator  $M_{\varphi}$  on a  $C(\Omega)$ -space, where  $\Omega$  is a compact Hausdorff space, is compact-friendly if and only if the multiplier  $\varphi$  has a flat.

Apart from its counterparts, this is the only known characterization of compact-friendliness on a concrete Banach lattice. A similar characterization of compact-friendly multiplication operators on  $L_p$ -spaces was obtained by Y.A. Abramovich, C.D. Aliprantis, O. Burkinshaw and A.W. Wickstead in 1998. G. Sirotkin has managed to extend the latter to arbitrary Banach function spaces in 2002.

# Theorem (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1998)

If a non-zero compact-friendly operator  $B : E \to E$  on a Banach lattice E is quasi-nilpotent at some  $x_0 > 0$ , then B has a non-trivial closed invariant ideal.

#### The motivation

Let *B* and *R* be two commuting positive operators on *E* such that *B* is compact-friendly and *R* is locally quasi-nilpotent at some non-zero positive vector in *E*. Does there exist a non-trivial closed *B*-invariant subspace, or an *R*-invariant subspace, or a common invariant subspace for *B* and *R*?

# Theorem (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1998)

If a non-zero compact-friendly operator  $B : E \to E$  on a Banach lattice E is quasi-nilpotent at some  $x_0 > 0$ , then B has a non-trivial closed invariant ideal.

## The motivation

Let *B* and *R* be two commuting positive operators on *E* such that *B* is compact-friendly and *R* is locally quasi-nilpotent at some non-zero positive vector in *E*. Does there exist a non-trivial closed *B*-invariant subspace, or an *R*-invariant subspace, or a common invariant subspace for *B* and *R*?

- An operator Q ∈ L(X, Y) is a quasi-affinity if Q is one-to-one and has dense range.
- An operator *T* ∈ *L*(*X*) is said to be a quasi-affine transform of an operator *S* ∈ *L*(*Y*) if there exists a quasi-affinity *Q* ∈ *L*(*X*, *Y*) such that *QT* = *SQ*.
- If both *T* and *S* are quasi-affine transforms of each other, the operators *T* ∈ *L*(*X*) and *S* ∈ *L*(*Y*) are called quasi-similar and this is denoted by *T* <sup>qs</sup> ⊂ *S*.
- Similarity implies quasi-similarity; the implication is generally not reversible.
- Quasi-similarity is an equivalence relation on the class of all operators.
- Quasi-similarity and commutativity are different notions: neither of them implies the other.

- An operator Q ∈ L(X, Y) is a quasi-affinity if Q is one-to-one and has dense range.
- An operator *T* ∈ *L*(*X*) is said to be a quasi-affine transform of an operator *S* ∈ *L*(*Y*) if there exists a quasi-affinity *Q* ∈ *L*(*X*, *Y*) such that *QT* = *SQ*.
- If both *T* and *S* are quasi-affine transforms of each other, the operators *T* ∈ *L*(*X*) and *S* ∈ *L*(*Y*) are called quasi-similar and this is denoted by *T* <sup>qs</sup> ⊂ *S*.
- Similarity implies quasi-similarity; the implication is generally not reversible.
- Quasi-similarity is an equivalence relation on the class of all operators.
- Quasi-similarity and commutativity are different notions: neither of them implies the other.

- An operator Q ∈ L(X, Y) is a quasi-affinity if Q is one-to-one and has dense range.
- An operator *T* ∈ *L*(*X*) is said to be a quasi-affine transform of an operator *S* ∈ *L*(*Y*) if there exists a quasi-affinity *Q* ∈ *L*(*X*, *Y*) such that *QT* = *SQ*.
- If both *T* and *S* are quasi-affine transforms of each other, the operators *T* ∈ *L*(*X*) and *S* ∈ *L*(*Y*) are called quasi-similar and this is denoted by *T* <sup>qs</sup> ⊂ *S*.
- Similarity implies quasi-similarity; the implication is generally not reversible.
- Quasi-similarity is an equivalence relation on the class of all operators.
- Quasi-similarity and commutativity are different notions: neither of them implies the other.

- An operator Q ∈ L(X, Y) is a quasi-affinity if Q is one-to-one and has dense range.
- An operator *T* ∈ *L*(*X*) is said to be a quasi-affine transform of an operator *S* ∈ *L*(*Y*) if there exists a quasi-affinity *Q* ∈ *L*(*X*, *Y*) such that *QT* = *SQ*.
- If both *T* and *S* are quasi-affine transforms of each other, the operators *T* ∈ *L*(*X*) and *S* ∈ *L*(*Y*) are called quasi-similar and this is denoted by *T* <sup>qs</sup> ⊂ *S*.
- Similarity implies quasi-similarity; the implication is generally not reversible.
- Quasi-similarity is an equivalence relation on the class of all operators.
- Quasi-similarity and commutativity are different notions: neither of them implies the other.

Positive quasi-similarity and strong compact-friendliness

### Positive quasi-similarity

Two positive operators  $S \in \mathcal{L}(E)$  and  $T \in \mathcal{L}(F)$  are **positively quasi-similar**, denoted by  $S \stackrel{pqs}{\sim} T$ , if there exist positive quasi-affinities  $P \in \mathcal{L}(E, F)$  and  $Q \in \mathcal{L}(F, E)$  such that TP = PS and QT = SQ.

• Since positive operators between Banach lattices are continuous, each operator dominated by a positive operator is automatically continuous. This guarantees the non-triviality of an operator of the form *QTP* if *P* and *Q* are positive quasi-affinities on *E*, whenever *T* is a non-trivial operator dominated by a positive operator on *E*.

Positive quasi-similarity and strong compact-friendliness

### Positive quasi-similarity

Two positive operators  $S \in \mathcal{L}(E)$  and  $T \in \mathcal{L}(F)$  are **positively quasi-similar**, denoted by  $S \stackrel{pqs}{\sim} T$ , if there exist positive quasi-affinities  $P \in \mathcal{L}(E, F)$  and  $Q \in \mathcal{L}(F, E)$  such that TP = PS and QT = SQ.

• Since positive operators between Banach lattices are continuous, each operator dominated by a positive operator is automatically continuous. This guarantees the non-triviality of an operator of the form *QTP* if *P* and *Q* are positive quasi-affinities on *E*, whenever *T* is a non-trivial operator dominated by a positive operator on *E*.

Open problems References

Positive quasi-similarity and strong compact-friendliness

#### Lemma

Let B and T be two positive operators on E. If B is compact-friendly and T is positively quasi-similar to B, then T is also compact-friendly.

#### Sketch of proof.

- Since  $T \sim^{pqs} B$ , there exist quasi-affinities *P* and *Q* such that BP = PT and QB = TQ.
- As B is compact-friendly, there exist three non-zero operators R, K, and C on E with R, K positive and K compact such that RB = BR, C ≺ R, and C ≺ K.
- Take  $R_1 := QRP$ ,  $K_1 := QKP$ , and  $C_1 := QCP$  as the required three operators for the compact-friendliness of *T*.

Open problems References

Positive quasi-similarity and strong compact-friendliness

#### Lemma

Let B and T be two positive operators on E. If B is compact-friendly and T is positively quasi-similar to B, then T is also compact-friendly.

## Sketch of proof.

- Since  $T \sim^{pqs} B$ , there exist quasi-affinities *P* and *Q* such that BP = PT and QB = TQ.
- As B is compact-friendly, there exist three non-zero operators R, K, and C on E with R, K positive and K compact such that RB = BR, C ≺ R, and C ≺ K.
- Take  $R_1 := QRP$ ,  $K_1 := QKP$ , and  $C_1 := QCP$  as the required three operators for the compact-friendliness of *T*.

- Although quasi-similarity need not preserve compactness (T.B. Hoover–1972), positive quasi-similarity does preserve compact-friendliness.
- There exists a non-zero quasi-nilpotent operator on  $\ell_2$  that does not commute with any non-zero compact operator, and hence is not quasi-similar to any compact operator (C. Foiaş & C. Pearcy–1974). Combined with a result of H.H. Schaefer which dates back to 1970, an example in the same spirit for Banach lattices is obtained: *there exists a positive quasi-nilpotent operator on the Banach lattice*  $L_p(\mu)$ , where  $1 \le p < \infty$  and  $\mu$  is the Lebesgue measure on the unit circle  $\mathbb{T}$ , which is not positively quasi-similar to any non-zero compact-friendly operator.

- Although quasi-similarity need not preserve compactness (T.B. Hoover–1972), positive quasi-similarity does preserve compact-friendliness.
- There exists a non-zero quasi-nilpotent operator on  $\ell_2$  that does not commute with any non-zero compact operator, and hence is not quasi-similar to any compact operator (C. Foiaş & C. Pearcy–1974). Combined with a result of H.H. Schaefer which dates back to 1970, an example in the same spirit for Banach lattices is obtained: there exists a positive quasi-nilpotent operator on the Banach lattice  $L_p(\mu)$ , where  $1 \le p < \infty$  and  $\mu$  is the Lebesgue measure on the unit circle T, which is not positively quasi-similar to any non-zero compact-friendly operator.

- Although quasi-similarity need not preserve compactness (T.B. Hoover–1972), positive quasi-similarity does preserve compact-friendliness.
- There exists a non-zero quasi-nilpotent operator on ℓ<sub>2</sub> that does not commute with any non-zero compact operator, and hence is not quasi-similar to any compact operator (C. Foiaş & C. Pearcy−1974). Combined with a result of H.H. Schaefer which dates back to 1970, an example in the same spirit for Banach lattices is obtained: *there exists a positive quasi-nilpotent operator on the Banach lattice* L<sub>p</sub>(μ), where 1 ≤ p < ∞ and μ is the Lebesgue measure on the unit circle T, which is not positively quasi-similar to any non-zero compact-friendly operator.</li>

Open problems References

Positive quasi-similarity and strong compact-friendliness

## Theorem

Let B and T be two positive operators on E such that B is compact-friendly and T is locally quasi-nilpotent at a non-zero positive element of E. If  $B \stackrel{pqs}{\sim} T$ , then T has a non-trivial closed invariant ideal.

#### Strongly compact-friendly operators

A positive operator *B* on a Banach lattice *E* is called **strongly compact-friendly** if there exist three non-zero operators *R*, *K*, and *C* on *E* with *R*, *K* positive, *K* compact such that  $B \stackrel{pas}{\sim} R$ , and *C* is dominated by both *R* and *K*.

Denote the families of positive compact operators, strongly compact-friendly operators and compact-friendly operators on *E* by  $\mathcal{K}(E)_+$ ,  $\mathcal{SKF}(E)$  and  $\mathcal{KF}(E)$ , respectively.

Open problems References

Positive quasi-similarity and strong compact-friendliness

## Theorem

Let B and T be two positive operators on E such that B is compact-friendly and T is locally quasi-nilpotent at a non-zero positive element of E. If  $B \stackrel{pqs}{\sim} T$ , then T has a non-trivial closed invariant ideal.

## Strongly compact-friendly operators

A positive operator *B* on a Banach lattice *E* is called **strongly compact-friendly** if there exist three non-zero operators *R*, *K*, and *C* on *E* with *R*, *K* positive, *K* compact such that  $B \stackrel{pqs}{\sim} R$ , and *C* is dominated by both *R* and *K*.

Denote the families of positive compact operators, strongly compact-friendly operators and compact-friendly operators on *E* by  $\mathcal{K}(E)_+$ ,  $\mathcal{SKF}(E)$  and  $\mathcal{KF}(E)$ , respectively.

Open problems References

Positive quasi-similarity and strong compact-friendliness

#### Theorem

Let B and T be two positive operators on E such that B is compact-friendly and T is locally quasi-nilpotent at a non-zero positive element of E. If  $B \stackrel{pqs}{\sim} T$ , then T has a non-trivial closed invariant ideal.

## Strongly compact-friendly operators

A positive operator *B* on a Banach lattice *E* is called **strongly compact-friendly** if there exist three non-zero operators *R*, *K*, and *C* on *E* with *R*, *K* positive, *K* compact such that  $B \stackrel{pqs}{\sim} R$ , and *C* is dominated by both *R* and *K*.

Denote the families of positive compact operators, strongly compact-friendly operators and compact-friendly operators on *E* by  $\mathcal{K}(E)_+$ ,  $\mathcal{SKF}(E)$  and  $\mathcal{KF}(E)$ , respectively.

Overview Ordered Banach spaces and operators on them

Compact-friendly-like operators

Open problems References

Positive quasi-similarity and strong compact-friendliness

#### Lemma

(i) If a positive operator B on E is positively quasi-similar to an operator on E which is dominated by a positive compact operator or which dominates a positive compact operator, then B is strongly compact-friendly, and the commutant {B}' of B contains an operator which is dominated by a positive compact operator or which dominates a positive compact operator, respectively. In particular, every positive operator which is positively quasi-similar to a positive compact operator is strongly compact-friendly and commutes with a positive compact operator.

(ii) A non-zero positive operator B on E is strongly compact-friendly if and only if  $\lambda B$  is strongly compact-friendly for some scalar  $\lambda > 0$ . However, B need not be quasi-similar to  $\lambda B$  for  $\lambda \neq 1$ . Overview Ordered Banach spaces and operators on them

Compact-friendly-like operators

Open problems References

Positive quasi-similarity and strong compact-friendliness

#### Lemma

(i) If a positive operator B on E is positively quasi-similar to an operator on E which is dominated by a positive compact operator or which dominates a positive compact operator, then B is strongly compact-friendly, and the commutant {B}' of B contains an operator which is dominated by a positive compact operator or which dominates a positive compact operator, respectively. In particular, every positive operator which is positively quasi-similar to a positive compact operator is strongly compact-friendly and commutes with a positive compact operator.

(ii) A non-zero positive operator B on E is strongly compact-friendly if and only if  $\lambda B$  is strongly compact-friendly for some scalar  $\lambda > 0$ . However, B need not be quasi-similar to  $\lambda B$  for  $\lambda \neq 1$ .

# (Continued)

(iii) A positive compact perturbation of a positive operator on E is strongly compact-friendly.

(iv) For every positive operator B on E, there exists a strongly compact-friendly operator T on E which dominates B.

(v) If  $B \ge I$  on E and  $\{B\}'$  does not contain a non-zero compact operator, then there exists a non-zero strongly

compact-friendly, non-compact operator on E which is not positively quasi-similar to B.

(vi) Positive kernel operators on order-complete Banach lattices are strongly compact-friendly.

# (Continued)

(iii) A positive compact perturbation of a positive operator on E is strongly compact-friendly.

(iv) For every positive operator B on E, there exists a strongly compact-friendly operator T on E which dominates B.

(v) If  $B \ge I$  on E and  $\{B\}'$  does not contain a non-zero compact operator, then there exists a non-zero strongly compact-friendly, non-compact operator on E which is not positively quasi-similar to B.

(vi) Positive kernel operators on order-complete Banach lattices are strongly compact-friendly.

# (Continued)

(iii) A positive compact perturbation of a positive operator on E is strongly compact-friendly.
(iv) For every positive operator B on E, there exists a strongly compact-friendly operator T on E which dominates B.
(v) If B ≥ I on E and {B}' does not contain a non-zero compact operator, then there exists a non-zero strongly compact-friendly, non-compact operator on E which is not positively quasi-similar to B.
(v) Positive kernel operators on order-complete Banach lattices

(vi) Positive kernel operators on order-complete Banach lattices are strongly compact-friendly.

# (Continued)

(iii) A positive compact perturbation of a positive operator on E is strongly compact-friendly.
(iv) For every positive operator B on E, there exists a strongly compact-friendly operator T on E which dominates B.
(v) If B ≥ I on E and {B}' does not contain a non-zero compact operator, then there exists a non-zero strongly compact-friendly, non-compact operator on E which is not positively quasi-similar to B.
(vi) Positive kernel operators on order-complete Banach lattices are strongly compact-friendly.

# (Continued)

(iii) A positive compact perturbation of a positive operator on E is strongly compact-friendly.
(iv) For every positive operator B on E, there exists a strongly compact-friendly operator T on E which dominates B.
(v) If B ≥ I on E and {B}' does not contain a non-zero compact operator, then there exists a non-zero strongly compact-friendly, non-compact operator on E which is not positively quasi-similar to B.
(vi) Positive kernel operators on order-complete Banach lattices

are strongly compact-friendly.

Open problems References

Positive quasi-similarity and strong compact-friendliness

## Theorem

For an infinite-dimensional Banach lattice E, one has

$$\mathcal{K}(E)_+ \subset \mathcal{SKF}(E) \subset \mathcal{KF}(E)$$

and the inclusions are generally proper.

### Sketch of proof.

- That both inclusions hold and that the former is proper follow from (i) and (iii) of the previous Lemma.
- For a compact Hausdorff space Ω without isolated points, the space E := C(Ω) and the identity operator on E provide together an example which reveals that the second inclusion may well be proper.

Overview Ordered Banach spaces and operators on them

Compact-friendly-like operators

Open problems References

Positive quasi-similarity and strong compact-friendliness

#### Theorem

For an infinite-dimensional Banach lattice E, one has

 $\mathcal{K}(E)_+ \subset \mathcal{SKF}(E) \subset \mathcal{KF}(E)$ 

and the inclusions are generally proper.

## Sketch of proof.

- That both inclusions hold and that the former is proper follow from (i) and (iii) of the previous Lemma.
- For a compact Hausdorff space Ω without isolated points, the space E := C(Ω) and the identity operator on E provide together an example which reveals that the second inclusion may well be proper.

Example. A strongly compact-friendly operator which is not polynomially compact

Let  $T:\ell_2 \to \ell_2$  be the backward weighted shift defined by

 $Te_0 = 0$  and  $Te_{n+1} = \tau_n e_n$ ,  $n \ge 0$ ,

where  $(e_n)_{n=0}^{\infty}$  is the canonical basis of  $\ell_2$  and  $(\tau_n)_{n=0}^{\infty}$  is the sequence

$$\left(\frac{1}{2}, \frac{1}{2^4}, \frac{1}{2}, \frac{1}{2^{16}}, \frac{1}{2}, \frac{1}{2^4}, \frac{1}{2}, \frac{1}{2^{64}}, \frac{1}{2}, \frac{1}{2^4}, \frac{1}{2}, \frac{1}{2^{256}}, \cdots\right)$$

(C. Foiaş & C. Pearcy-1974)

## One can observe that:

## • T is a positive, non-compact operator.

- T is strongly compact-friendly.
- ||*T<sup>n</sup>*||<sup>1/n</sup> → 0, that is, *T* is quasi-nilpotent, and hence is essentially quasi-nilpotent.
- No power of *T* is compact.

## One can observe that:

- T is a positive, non-compact operator.
- *T* is strongly compact-friendly.
- ||*T<sup>n</sup>*||<sup>1/n</sup> → 0, that is, *T* is quasi-nilpotent, and hence is essentially quasi-nilpotent.
- No power of *T* is compact.

One can observe that:

- T is a positive, non-compact operator.
- T is strongly compact-friendly.
- ||*T<sup>n</sup>*||<sup>1/n</sup> → 0, that is, *T* is quasi-nilpotent, and hence is essentially quasi-nilpotent.
- No power of *T* is compact.

One can observe that:

- T is a positive, non-compact operator.
- T is strongly compact-friendly.
- ||*T<sup>n</sup>*||<sup>1/n</sup> → 0, that is, *T* is quasi-nilpotent, and hence is essentially quasi-nilpotent.
- No power of *T* is compact.

One can observe that:

- T is a positive, non-compact operator.
- T is strongly compact-friendly.
- ||*T<sup>n</sup>*||<sup>1/n</sup> → 0, that is, *T* is quasi-nilpotent, and hence is essentially quasi-nilpotent.
- No power of *T* is compact.
Positive quasi-similarity and strong compact-friendliness

## On a subclass of SKF(E), the local quasi-nilpotence assumption in (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1998) can be removed.

#### Theorem

Let B be a positive operator on E. If B is positively quasi-similar to a positive operator R on E which is dominated by a positive compact operator K on E, then B has a non-trivial closed invariant subspace. Moreover, for each sequence  $(T_n)_{n \in \mathbb{N}}$  in  $\{B\}'$ , there exists a non-trivial closed subspace that is invariant under B and under each  $T_n$ . Positive quasi-similarity and strong compact-friendliness

On a subclass of SKF(E), the local quasi-nilpotence assumption in (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1998) can be removed.

#### Theorem

Let B be a positive operator on E. If B is positively quasi-similar to a positive operator R on E which is dominated by a positive compact operator K on E, then B has a non-trivial closed invariant subspace. Moreover, for each sequence  $(T_n)_{n \in \mathbb{N}}$  in  $\{B\}'$ , there exists a non-trivial closed subspace that is invariant under B and under each  $T_n$ .

## For a positive operator *B* on a Banach lattice *E*, the **super right-commutant** $|B\rangle$ of *B* is defined by

$$[B\rangle := \{A \in \mathcal{L}(E)_+ \mid AB - BA \ge 0\}.$$

A subspace of *E* which is *A*-invariant for every operator *A* in  $|B\rangle$  is called a  $|B\rangle$ -invariant subspace.

#### Weakly compact-friendly operators

A positive operator  $B \in \mathcal{L}(E)$  is called **weakly compact-friendly** if there exist three non-zero operators R, K, and C on E with R, K positive and K compact such that  $R \in [B\rangle$ , and C is dominated by both R and K. Compact-friendly-like operators Open problems

References

Super right-commutants and weak compact-friendliness

For a positive operator *B* on a Banach lattice *E*, the **super right-commutant**  $|B\rangle$  of *B* is defined by

$$[B\rangle := \{A \in \mathcal{L}(E)_+ \mid AB - BA \ge 0\}.$$

## A subspace of *E* which is *A*-invariant for every operator *A* in $|B\rangle$ is called a $|B\rangle$ -invariant subspace.

#### Weakly compact-friendly operators

A positive operator  $B \in \mathcal{L}(E)$  is called **weakly compact-friendly** if there exist three non-zero operators R, K, and C on E with R, K positive and K compact such that  $R \in [B\rangle$ , and C is dominated by both R and K. Compact-friendly-like operators Open problems

References

For a positive operator *B* on a Banach lattice *E*, the **super right-commutant**  $|B\rangle$  of *B* is defined by

$$[B\rangle := \{A \in \mathcal{L}(E)_+ \mid AB - BA \ge 0\}.$$

A subspace of *E* which is *A*-invariant for every operator *A* in  $|B\rangle$  is called a  $|B\rangle$ -invariant subspace.

#### Weakly compact-friendly operators

A positive operator  $B \in \mathcal{L}(E)$  is called **weakly compact-friendly** if there exist three non-zero operators R, K, and C on E with R, K positive and K compact such that  $R \in [B\rangle$ , and C is dominated by both R and K.

#### Weak positive quasi-similarity

Two positive operators  $B \in \mathcal{L}(E)$  and  $T \in \mathcal{L}(F)$  are **weakly positively quasi-similar**, denoted by  $B \stackrel{w}{\sim} T$ , if there exist positive quasi-affinities  $P \in \mathcal{L}(F, E)$  and  $Q \in \mathcal{L}(E, F)$  such that  $BP \leq PT$  and  $TQ \leq QB$ .

#### Theorem

The binary relation  $\stackrel{\text{w}}{\sim}$  is an equivalence relation on the class of all positive operators, under which weak compact-friendliness is preserved.

#### Weak positive quasi-similarity

Two positive operators  $B \in \mathcal{L}(E)$  and  $T \in \mathcal{L}(F)$  are **weakly positively quasi-similar**, denoted by  $B \stackrel{w}{\sim} T$ , if there exist positive quasi-affinities  $P \in \mathcal{L}(F, E)$  and  $Q \in \mathcal{L}(E, F)$  such that  $BP \leq PT$  and  $TQ \leq QB$ .

#### Theorem

The binary relation  $\stackrel{\text{w}}{\sim}$  is an equivalence relation on the class of all positive operators, under which weak compact-friendliness is preserved.

### Example. A weakly compact-friendly operator which is not compact-friendly

Let E := C[0, 1/2], equipped with the uniform norm. Define  $\varphi : [0, 1/2] \to \mathbb{R}$  by  $\varphi(\omega) := 1 - 2\omega$  for all  $\omega \in [0, 1/2]$ . The multiplication operator  $M_{\varphi} : E \to E$  is not compact-friendly since  $\varphi$  has no flats. But  $M_{\varphi}$  is weakly compact-friendly: take the linear functional  $\psi \in E^*$  given by  $\psi(f) := f(0)$  for all  $f \in E$ and define the rank-one (and hence, compact) positive operator  $K : E \to E$  by

$$Kf := (\psi \otimes \varphi)(f), \quad f \in E.$$

Set R = C := K.

Super right-commutants and weak compact-friendliness

The arguments, with slight modifications, used in the proof of the corresponding theorem of Abramovich, Aliprantis and Burkinshaw concerning the commutant of the operator *B* can be shown to work for weakly compact-friendly operators as well.

#### Theorem

If a non-zero weakly compact-friendly operator  $B : E \to E$  on a Banach lattice is quasi-nilpotent at some  $x_0 > 0$ , then B has a non-trivial closed invariant ideal. Moreover, for each sequence  $(T_n)_{n \in \mathbb{N}}$  in  $[B\rangle$  there exists a non-trivial closed ideal that is invariant under B and under each  $T_n$ .

The arguments, with slight modifications, used in the proof of the corresponding theorem of Abramovich, Aliprantis and Burkinshaw concerning the commutant of the operator *B* can be shown to work for weakly compact-friendly operators as well.

#### Theorem

If a non-zero weakly compact-friendly operator  $B : E \to E$  on a Banach lattice is quasi-nilpotent at some  $x_0 > 0$ , then B has a non-trivial closed invariant ideal. Moreover, for each sequence  $(T_n)_{n \in \mathbb{N}}$  in  $[B\rangle$  there exists a non-trivial closed ideal that is invariant under B and under each  $T_n$ .

Super right-commutants and weak compact-friendliness

#### Theorem

Let T be a locally quasi-nilpotent positive operator which is weakly positively quasi-similar to a compact operator. Then T has a non-trivial closed invariant subspace.

#### Sketch of proof.

- If *T* <sup>w</sup>∼ *K* with *K* compact, then there exist positive quasi-affinities *P* and *Q* such that *TP* ≤ *PK* and *KQ* ≤ *QT*. Thus, *TPKQ* ≤ *PK*<sup>2</sup>*Q* ≤ *PKQT*, i.e., the compact operator *K*<sub>0</sub> := *PKQ* belongs to [*T*⟩.
- Being also weakly-compact friendly by the next-to-last Theorem, the locally quasi-nilpotent operator *T* has a non-trivial closed invariant ideal by the previous Theorem.

Super right-commutants and weak compact-friendliness

#### Theorem

Let T be a locally quasi-nilpotent positive operator which is weakly positively quasi-similar to a compact operator. Then T has a non-trivial closed invariant subspace.

#### Sketch of proof.

- If *T* <sup>w</sup>∼ *K* with *K* compact, then there exist positive quasi-affinities *P* and *Q* such that *TP* ≤ *PK* and *KQ* ≤ *QT*. Thus, *TPKQ* ≤ *PK*<sup>2</sup>*Q* ≤ *PKQT*, i.e., the compact operator *K*<sub>0</sub> := *PKQ* belongs to [*T*⟩.
- Being also weakly-compact friendly by the next-to-last Theorem, the locally quasi-nilpotent operator *T* has a non-trivial closed invariant ideal by the previous Theorem.

#### Topological fullness of the center (A.W. Wickstead-1981)

The center  $\mathcal{Z}(E)$  of a Banach lattice *E* is called **topologically full** if whenever  $x, y \in E$  with  $0 \le x \le y$ , one can find a sequence  $(T_n)_{n \in \mathbb{N}}$  in  $\mathcal{Z}(E)$  such that  $||T_ny - x|| \to 0$ .

#### Some examples are:

- Banach lattices with quasi-interior points—such as separable Banach lattices.
- Dedekind  $\sigma$ -complete Banach lattices—such as  $L_p$ -spaces.

#### Topological fullness of the center (A.W. Wickstead-1981)

The center  $\mathcal{Z}(E)$  of a Banach lattice *E* is called **topologically full** if whenever  $x, y \in E$  with  $0 \le x \le y$ , one can find a sequence  $(T_n)_{n \in \mathbb{N}}$  in  $\mathcal{Z}(E)$  such that  $||T_ny - x|| \to 0$ .

Some examples are:

- Banach lattices with quasi-interior points—such as separable Banach lattices.
- Dedekind  $\sigma$ -complete Banach lattices—such as  $L_{\rho}$ -spaces.

#### Topological fullness of the center (A.W. Wickstead-1981)

The center  $\mathcal{Z}(E)$  of a Banach lattice *E* is called **topologically full** if whenever  $x, y \in E$  with  $0 \le x \le y$ , one can find a sequence  $(T_n)_{n \in \mathbb{N}}$  in  $\mathcal{Z}(E)$  such that  $||T_ny - x|| \to 0$ .

Some examples are:

- Banach lattices with quasi-interior points—such as separable Banach lattices.
- Dedekind  $\sigma$ -complete Banach lattices—such as  $L_p$ -spaces.

The result in (J. Flores, P. Tradacete & V.G. Troitsky-2008), which uses the existence of a quasi-interior point, can further be improved.

#### Theorem

Suppose that B is a positive operator on a Banach lattice E with topologically full center such that

- (i) B is locally quasi-nilpotent at some  $x_0 > 0$ , and
- (ii) there is an S ∈ [B⟩ such that S dominates a non-zero AM-compact operator K.

Then  $|B\rangle$  has an invariant closed ideal.

The result in (J. Flores, P. Tradacete & V.G. Troitsky–2008), which uses the existence of a quasi-interior point, can further be improved.

#### Theorem

Suppose that B is a positive operator on a Banach lattice E with topologically full center such that

- (i) B is locally quasi-nilpotent at some  $x_0 > 0$ , and
- (ii) there is an S ∈ [B⟩ such that S dominates a non-zero AM-compact operator K.

Then  $|B\rangle$  has an invariant closed ideal.

Banach lattices with topologically full center

#### Sketch of proof.

- Since the null ideal  $N_B$  of B is  $[B\rangle$ -invariant, assume that  $N_B = \{0\}$ .
- Use the topological fullness of  $\mathcal{Z}(E)$  to show that there exists an operator *M* in

#### $\mathcal{Z}(E)_{1+} := \{T \in Z(E) \mid 0 \leqslant T \leqslant l\}$

- Put  $K_1 := MK$  and observe that  $BK_1 \neq 0$ , that  $BK_1$  is *AM*-compact, and that  $BK_1$  is dominated by *BS*.
- Observe that the semigroup ideal *J* in [*B*) generated by *BS* is finitely quasi-nilpotent at *x*<sub>0</sub>, whence *J* has an invariant closed ideal.

#### Sketch of proof.

- Since the null ideal  $N_B$  of B is  $[B\rangle$ -invariant, assume that  $N_B = \{0\}$ .
- Use the topological fullness of Z(E) to show that there exists an operator M in

$$\mathcal{Z}(E)_{1+} := \{T \in Z(E) \mid 0 \leqslant T \leqslant I\}$$

- Put  $K_1 := MK$  and observe that  $BK_1 \neq 0$ , that  $BK_1$  is *AM*-compact, and that  $BK_1$  is dominated by *BS*.
- Observe that the semigroup ideal *J* in [*B*) generated by *BS* is finitely quasi-nilpotent at *x*<sub>0</sub>, whence *J* has an invariant closed ideal.

#### Sketch of proof.

- Since the null ideal  $N_B$  of B is  $[B\rangle$ -invariant, assume that  $N_B = \{0\}$ .
- Use the topological fullness of Z(E) to show that there exists an operator M in

$$\mathcal{Z}(E)_{1+} := \{T \in Z(E) \mid 0 \leqslant T \leqslant I\}$$

- Put  $K_1 := MK$  and observe that  $BK_1 \neq 0$ , that  $BK_1$  is *AM*-compact, and that  $BK_1$  is dominated by *BS*.
- Observe that the semigroup ideal *J* in [*B*⟩ generated by *BS* is finitely quasi-nilpotent at *x*<sub>0</sub>, whence *J* has an invariant closed ideal.

#### Sketch of proof.

- Since the null ideal  $N_B$  of B is  $[B\rangle$ -invariant, assume that  $N_B = \{0\}$ .
- Use the topological fullness of Z(E) to show that there exists an operator M in

$$\mathcal{Z}(E)_{1+} := \{T \in Z(E) \mid 0 \leqslant T \leqslant I\}$$

- Put  $K_1 := MK$  and observe that  $BK_1 \neq 0$ , that  $BK_1$  is *AM*-compact, and that  $BK_1$  is dominated by *BS*.
- Observe that the semigroup ideal *J* in [*B*⟩ generated by *BS* is finitely quasi-nilpotent at *x*<sub>0</sub>, whence *J* has an invariant closed ideal.

# Dedekind completeness and compact-friendliness can be relaxed, respectively, to topological fullness of the center and weak compact-friendliness in (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1998).

#### Theorem

Let E be a Banach lattice with topologically full center. If B is a locally quasi-nilpotent weakly compact-friendly operator on E, then  $[B\rangle$  has a non-trivial closed invariant ideal.

Dedekind completeness and compact-friendliness can be relaxed, respectively, to topological fullness of the center and weak compact-friendliness in (Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw–1998).

#### Theorem

Let E be a Banach lattice with topologically full center. If B is a locally quasi-nilpotent weakly compact-friendly operator on E, then  $[B\rangle$  has a non-trivial closed invariant ideal.

Open problems References

Banach lattices with topologically full center

#### Sketch of proof.

- For each x > 0 denote by J<sub>x</sub> the ideal generated by the orbit [B⟩x, and suppose that J<sub>x</sub> = E for each x > 0.
- Use the topological fullness of Z(E) to show that there exists an operator M₁ in

#### $\mathcal{Z}(E)_{1+} := \{T \in Z(E) \mid 0 \leqslant T \leqslant I\}$

- Put  $\pi_1 := M_1 C$  and observe that  $\pi_1$  is dominated by R and K.
- Repeat the preceding argument twice more to get a non-zero positive operator S in [B) which dominates a compact operator.
- Invoke the previous Theorem to get the assertion.

#### Sketch of proof.

- For each x > 0 denote by J<sub>x</sub> the ideal generated by the orbit [B⟩x, and suppose that J<sub>x</sub> = E for each x > 0.
- Use the topological fullness of Z(E) to show that there exists an operator M<sub>1</sub> in

$$\mathcal{Z}(E)_{1+} := \{T \in Z(E) \mid 0 \leqslant T \leqslant I\}$$

- Put  $\pi_1 := M_1 C$  and observe that  $\pi_1$  is dominated by R and K.
- Repeat the preceding argument twice more to get a non-zero positive operator S in [B) which dominates a compact operator.
- Invoke the previous Theorem to get the assertion.

#### Sketch of proof.

- For each x > 0 denote by J<sub>x</sub> the ideal generated by the orbit [B⟩x, and suppose that J<sub>x</sub> = E for each x > 0.
- Use the topological fullness of Z(E) to show that there exists an operator M<sub>1</sub> in

$$\mathcal{Z}(E)_{1+} := \{T \in Z(E) \mid 0 \leqslant T \leqslant I\}$$

- Put π<sub>1</sub> := M<sub>1</sub>C and observe that π<sub>1</sub> is dominated by R and K.
- Repeat the preceding argument twice more to get a non-zero positive operator S in [B) which dominates a compact operator.
- Invoke the previous Theorem to get the assertion.

#### Sketch of proof.

- For each x > 0 denote by J<sub>x</sub> the ideal generated by the orbit [B⟩x, and suppose that J<sub>x</sub> = E for each x > 0.
- Use the topological fullness of Z(E) to show that there exists an operator M<sub>1</sub> in

$$\mathcal{Z}(E)_{1+} := \{T \in Z(E) \mid 0 \leqslant T \leqslant I\}$$

- Put π<sub>1</sub> := M<sub>1</sub>C and observe that π<sub>1</sub> is dominated by R and K.
- Repeat the preceding argument twice more to get a non-zero positive operator S in [B) which dominates a compact operator.
- Invoke the previous Theorem to get the assertion.

#### Sketch of proof.

- For each x > 0 denote by J<sub>x</sub> the ideal generated by the orbit [B⟩x, and suppose that J<sub>x</sub> = E for each x > 0.
- Use the topological fullness of Z(E) to show that there exists an operator M<sub>1</sub> in

$$\mathcal{Z}(E)_{1+} := \{T \in Z(E) \mid 0 \leqslant T \leqslant I\}$$

- Put π<sub>1</sub> := M<sub>1</sub>C and observe that π<sub>1</sub> is dominated by R and K.
- Repeat the preceding argument twice more to get a non-zero positive operator S in [B) which dominates a compact operator.
- Invoke the previous Theorem to get the assertion.

Open problems References

- Does every positive operator on l<sub>1</sub> have a non-trivial closed invariant subspace?
- Fix a positive operator *B* on *E*, and suppose that there exists a non-zero compact operator dominated by *B*. Does it follow that there exists a non-zero compact *positive* operator dominated by *B*?
- It is not known whether the set KF(E) is order-dense in L(E) for an arbitrary Banach lattice E. Is the set SKF(E) order-dense in L(E)? In other words, does every strictly positive operator dominate some strongly compact-friendly operator?

- Does every positive operator on l<sub>1</sub> have a non-trivial closed invariant subspace?
- Fix a positive operator *B* on *E*, and suppose that there exists a non-zero compact operator dominated by *B*. Does it follow that there exists a non-zero compact *positive* operator dominated by *B*?
- It is not known whether the set KF(E) is order-dense in L(E) for an arbitrary Banach lattice E. Is the set SKF(E) order-dense in L(E)? In other words, does every strictly positive operator dominate some strongly compact-friendly operator?

- Does every positive operator on l<sub>1</sub> have a non-trivial closed invariant subspace?
- Fix a positive operator *B* on *E*, and suppose that there exists a non-zero compact operator dominated by *B*. Does it follow that there exists a non-zero compact *positive* operator dominated by *B*?
- It is not known whether the set KF(E) is order-dense in L(E) for an arbitrary Banach lattice E. Is the set SKF(E) order-dense in L(E)? In other words, does every strictly positive operator dominate some strongly compact-friendly operator?

- Does every positive operator on l<sub>1</sub> have a non-trivial closed invariant subspace?
- Fix a positive operator *B* on *E*, and suppose that there exists a non-zero compact operator dominated by *B*. Does it follow that there exists a non-zero compact *positive* operator dominated by *B*?
- It is not known whether the set KF(E) is order-dense in *L*(E) for an arbitrary Banach lattice E. Is the set SKF(E) order-dense in L(E)? In other words, does every strictly positive operator dominate some strongly compact-friendly operator?

- Let *B* and *R* be two commuting positive operators on *E* such that *B* is compact-friendly and *R* is locally quasi-nilpotent at some non-zero positive vector in *E*. Does there exist a non-trivial closed *B*-invariant subspace, or an *R*-invariant subspace, or a common invariant subspace for *B* and *R*?
- Does every strongly compact-friendly operator have a non-trivial closed invariant subspace?

- Let *B* and *R* be two commuting positive operators on *E* such that *B* is compact-friendly and *R* is locally quasi-nilpotent at some non-zero positive vector in *E*. Does there exist a non-trivial closed *B*-invariant subspace, or an *R*-invariant subspace, or a common invariant subspace for *B* and *R*?
- Does every strongly compact-friendly operator have a non-trivial closed invariant subspace?

• Let *B* and *R* be two commuting positive operators on *E* such that *B* is strongly compact-friendly and *R* is locally quasi-nilpotent at some non-zero positive vector in *E*. Does there exist a non-trivial closed *B*-invariant subspace, or an *R*-invariant subspace, or a common invariant subspace for *B* and *R*?

• Let *B* and *R* be two commuting positive operators on *E* such that *B* is strongly compact-friendly and *R* is locally quasi-nilpotent at some non-zero positive vector in *E*. Does there exist a non-trivial closed *B*-invariant subspace, or an *R*-invariant subspace, or a common invariant subspace for *B* and *R*?
- Y.A. Abramovich & C.D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics, Vol. 50, American Mathematical Society, Providence, RI, 2002.
- Y.A. Abramovich, C.D. Aliprantis & O. Burkinshaw, "The invariant subspace problem: some recent advances," in *Workshop on Measure Theory and Real Analysis* (italian) (Grado, 1995); *Rend. Inst. Mat. Univ. Trieste* **29** (1998), suppl., 3-79 (1999).
- C.D. Aliprantis & O. Burkinshaw, *Positive Operators*, Springer, The Netherlands, 2006.
- C. Apostol, H. Bercovici, C. Foiaş & C. Pearcy, "Quasiaffine transforms of operators," *Michigan Math. J.* 29 (1982), no. 2, 243-255.

- A. Biswas, A. Lambert & S. Petrovic, "Generalized eigenvalues and the Volterra operator," *Glasg. Math. J.* 44 (2002), no. 3, 521-534.
- M. Çağlar & T. Mısırlıoğlu, "Invariant subspaces of weakly compact-friendly operators," *Turkish J. Math.*, forthcoming.
- M. Çağlar & T. Mısırlıoğlu, "A note on a problem of Abramovich, Aliprantis and Burkinshaw," *Positivity* 15 (2011), no. 3, 473-480.
- M. Çağlar & T. Mısırlıoğlu, "Weakly compact-friendly operators," *Vladikavkaz Mat. Zh.* **11** (2009), no. 2, 27-30.
- J. Flores, P. Tradacete & V.G. Troitsky, "Invariant subspaces of positive strictly singular operators on Banach lattices," *J. Math. Anal. Appl.* **343** (2008), no. 2, 743-751.
- C. Foiaş & C. Pearcy, "A model for quasinilpotent operators," *Michigan Math. J.* **21** (1974), 399-404.

- Y.M. Han, S.H. Lee & W.Y. Lee, "On the structure of polynomially compact operators," *Math. Z.* 232 (1999), no. 2, 257-263.
- T.B. Hoover, "Quasi-similarity of operators," *Illinois J. Math.* **16** (1972), 678-686.
- K.B. Laursen & M.M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs, New Series 20, Clarendon Press, Oxford, 2000.
- P. Meyer-Nieberg, *Banach Lattices*, Springer-Verlag, Berlin and New York, 1991.
- G. Sirotkin, "A version of the Lomonosov invariant subspace theorem for real Banach spaces," *Indiana Univ. Math. J.* **54** (2005), no. 1, 257-262.

- B. Sz.-Nagy & C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, American Elsevier Publishing Company, Inc., NY, 1970.
- A.W. Wickstead, "Extremal structure of cones of operators," *Quart. J. Math. Oxford* **32** (1981), no. 2, 239-253.
- A.W. Wickstead, "Banach lattices with topologically full centre," *Vladikavkaz Mat. Zh.* **11** (2009), no. 2, 50-60.