Discrete unbounded sets in a finite dimensional space and quasicrystals

S. FAVOROV

Karazin Kharkov national university, Ukraine

Istanbul, March, 2013
The Problem

Discrete sets in the plane: zeros of entire functions.

Discrete sets in a finite dimensional space: Lacshkovich's uniformly spread discrete sets, mathematical models of quasicrystals.

The Problem

Discrete sets in the plane: zeros of entire functions.
The Problem

Discrete sets in the plane: zeros of entire functions.

Discrete sets in a finite dimensional space: Lacshkovich’s uniformly spread discrete sets, mathematical models of quasicrystals.
The Problem

Discrete sets in the plane: zeros of entire functions.

Discrete sets in a finite dimensional space: Lacshkovich’s uniformly spread discrete sets, mathematical models of quasicrystals.

The Problem

Discrete sets in the plane: zeros of entire functions.

Discrete sets in a finite dimensional space: Lacshkovich’s uniformly spread discrete sets, mathematical models of quasicrystals.

The Problem

Discrete sets in the plane: zeros of entire functions.

Discrete sets in a finite dimensional space: Lacshkovich’s uniformly spread discrete sets, mathematical models of quasicrystals.

The distance between discrete sets

Let $A = \{a_n\}_{n \in \mathbb{N}}$ and $B = \{b_n\}_{n \in \mathbb{N}}$ be discrete sets in \mathbb{R}^p.

DEFINITION.

$$\text{dist}(A, B) = \inf \sigma \sup_{n \in \mathbb{N}} |a_n - b_{\sigma(n)}|,$$

infimum is taken over all bijections $\sigma : \mathbb{N} \to \mathbb{N}$.

Examples

1. $A, B \subset \mathbb{R}$, $A = \mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \ldots\}$, $B = \{3, 4, 8, 9, 10, 11, 12, \ldots\} \Rightarrow \text{dist}(A, B) = 5$.

2. $A, B \subset \mathbb{R}$, $A = \mathbb{N}$, $B = \{2, 4, 6, 8, 10, \ldots\} \Rightarrow \text{dist}(A, B) = \infty$.

3. $A, B \subset \mathbb{R}^2$, $A = \mathbb{N}^2$, $B = \{(n, m) \in \mathbb{N}^2 : \min\{m, n\} \geq 5\} \Rightarrow \text{dist}(A, B) = 4\sqrt{2}$.

S. Favorov (Kharkov national university)
The distance between discrete sets

Let $A = \{a_n\}_{n \in \mathbb{N}}$ and $B = \{b_n\}_{n \in \mathbb{N}}$ be discrete sets in \mathbb{R}^p.

\[\text{DEFINITION.} \quad \text{dist}(A, B) = \inf_{\sigma} \sup_{n \in \mathbb{N}} |a_n - b_{\sigma(n)}|, \quad \text{infimum is taken over all bijections } \sigma : \mathbb{N} \to \mathbb{N}. \]

\[\text{Examples} \]

1. $A, B \subset \mathbb{R}$, $A = \mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \ldots\}$, $B = \{3, 4, 8, 9, 10, 11, 12, \ldots\}$ \Rightarrow $\text{dist}(A, B) = 5$.

2. $A, B \subset \mathbb{R}$, $A = \mathbb{N}$, $B = \{2, 4, 6, 8, 10, \ldots\}$ \Rightarrow $\text{dist}(A, B) = \infty$.

3. $A, B \subset \mathbb{R}^2$, $A = \mathbb{N}^2$, $B = \{(n, m) \in \mathbb{N}^2 : \min\{m, n\} \geq 5\}$ \Rightarrow $\text{dist}(A, B) = 4\sqrt{2}$.

S. Favorov (Kharkov national university)

Discrete unbounded sets

Istanbul, March, 2013
The distance between discrete sets

Let \(A = \{a_n\}_{n \in \mathbb{N}} \) and \(B = \{b_n\}_{n \in \mathbb{N}} \) be discrete sets in \(\mathbb{R}^p \).

DEFINITION. \(\text{dist}(A, B) = \inf_{\sigma} \sup_{n \in \mathbb{N}} |a_n - b_{\sigma(n)}| \), infimum is taken over all bijections \(\sigma : \mathbb{N} \rightarrow \mathbb{N} \).
The distance between discrete sets

Let $A = \{a_n\}_{n \in \mathbb{N}}$ and $B = \{b_n\}_{n \in \mathbb{N}}$ be discrete sets in \mathbb{R}^p.

DEFINITION. $\text{dist}(A, B) = \inf_{\sigma} \sup_{n \in \mathbb{N}} |a_n - b_{\sigma(n)}|$, infimum is taken over all bijections $\sigma : \mathbb{N} \to \mathbb{N}$.

Examples
The distance between discrete sets

Let \(A = \{a_n\}_{n \in \mathbb{N}} \) and \(B = \{b_n\}_{n \in \mathbb{N}} \) be discrete sets in \(\mathbb{R}^p \).

DEFINITION. \(\text{dist}(A, B) = \inf_{\sigma} \sup_{n \in \mathbb{N}} |a_n - b_{\sigma(n)}| \), infimum is taken over all bijections \(\sigma : \mathbb{N} \rightarrow \mathbb{N} \).

Examples

1. \(A, B \subset \mathbb{R}, \quad A = \mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \ldots \}, \quad B = \{3, 4, 8, 9, 10, 11, 12, \ldots \} \Rightarrow \text{dist}(A, B) = 5. \)
The distance between discrete sets

Let $A = \{a_n\}_{n \in \mathbb{N}}$ and $B = \{b_n\}_{n \in \mathbb{N}}$ be discrete sets in \mathbb{R}^p.

DEFINITION. $\text{dist}(A, B) = \inf_{\sigma} \sup_{n \in \mathbb{N}} |a_n - b_\sigma(n)|$, infimum is taken over all bijections $\sigma : \mathbb{N} \rightarrow \mathbb{N}$.

Examples

1. $A, B \subset \mathbb{R}$, $A = \mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \ldots \}$, $B = \{3, 4, 8, 9, 10, 11, 12, \ldots \} \Rightarrow \text{dist}(A, B) = 5$.

2. $A, B \subset \mathbb{R}$, $A = \mathbb{N}$, $B = \{2, 4, 6, 8, 10, \ldots \} \Rightarrow \text{dist}(A, B) = \infty$.
The distance between discrete sets

Let \(A = \{a_n\}_{n \in \mathbb{N}} \) and \(B = \{b_n\}_{n \in \mathbb{N}} \) be discrete sets in \(\mathbb{R}^p \).

DEFINITION. \(\text{dist}(A, B) = \inf_{\sigma} \sup_{n \in \mathbb{N}} |a_n - b_{\sigma(n)}| \), infimum is taken over all bijections \(\sigma : \mathbb{N} \to \mathbb{N} \).

Examples

1. \(A, B \subset \mathbb{R}, \ A = \mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \ldots \}, \ B = \{3, 4, 8, 9, 10, 11, 12, \ldots \} \Rightarrow \text{dist}(A, B) = 5. \)
2. \(A, B \subset \mathbb{R}, \ A = \mathbb{N}, \ B = \{2, 4, 6, 8, 10, \ldots \} \Rightarrow \text{dist}(A, B) = \infty. \)
3. \(A, B \subset \mathbb{R}^2, \ A = \mathbb{N}^2, \ B = \{(n, m) \in \mathbb{N}^2 : \min\{m, n\} \geq 5\} \Rightarrow \text{dist}(A, B) = 4\sqrt{2}. \)
Two definitions

DEFINITION
A multiple discrete set
$A = (a_n)$ in \mathbb{R}^p without finite limit points, in other words,
$A = \{(x, m(x)) : m(x) > 0\}$,
where $m : \mathbb{R}^p \to \mathbb{N} \cup \{0\}$ is a mapping with a discrete support.

DEFINITION
A discrete set $A \subset \mathbb{R}^p$ is an S-set if $\forall t \in \mathbb{R}^p$ $\text{dist}(A, A + t) \leq \text{const} < \infty$.
Two definitions

DEFINITION A *multiple discrete set* is a sequence $A = (a_n)$ in \mathbb{R}^p without finite limit points, in other words,

$$A = \{(x, m(x)) : m(x) > 0\},$$

where $m : \mathbb{R}^p \rightarrow \mathbb{N} \cup \{0\}$ is a mapping with a discrete support.
Two definitions

DEFINITION A *multiple discrete set* is a sequence $A = (a_n)$ in \mathbb{R}^p without finite limit points, in other words,

$$A = \{(x, m(x)) : m(x) > 0\},$$

where $m : \mathbb{R}^p \rightarrow \mathbb{N} \cup \{0\}$ is a mapping with a discrete support.

DEFINITION A discrete set $A \subset \mathbb{R}^p$ is an *S-set* if

$$\forall t \in \mathbb{R}^p \quad \text{dist}(A, A + t) \leq \text{const} < \infty.$$
Properties of S-sets

Theorem (Kolbasina 2008)

1. Each S-set $A = (a_n)$ is translation–bounded, i.e.,
 \[\forall c \in \mathbb{R}^p \# \{n : |a_n - c| < 1 \} \leq \text{const} < \infty, \]

2. It has a uniform density $\Delta = \Delta(A)$, $0 < \Delta < \infty$, i.e.,
 \[\exists \lim_{T \to \infty} \# \{n : |a_n - c| < T \} \approx \omega_p T^p = \Delta, \]
 uniformly in $c \in \mathbb{R}^p$, where ω_p is the volume of the unit ball,

3. It is a bounded perturbation of the square lattice $\Delta - 1/p \mathbb{Z}^p$, i.e., it has a uniformly spread set in the sense of Laczkovich:
 \[a_k = \Delta - 1/p k + \varphi(k), \quad k \in \mathbb{Z}^p, \]
 $\varphi: \mathbb{Z}^p \to \mathbb{R}^p$ bounded for a suitable indexing of the set A.
Theorem (Kolbasina 2008)

Each \(S \)-set \(A = (a_n) \) is translation–bounded, i.e.,

\[
\forall c \in \mathbb{R}^p \quad \# \{ n : |a_n - c| < 1 \} \leq \text{const} < \infty,
\]
Properties of S-sets

Theorem (Kolbasina 2008)

1. Each S-set $A = (a_n)$ is translation–bounded, i.e.,

$$\forall \ c \in \mathbb{R}^p \quad \#\{n : |a_n - c| < 1\} \leq \text{const} < \infty,$$

2. has a uniform density $\Delta = \Delta(A)$, $0 < \Delta < \infty$, i.e.,

$$\exists \lim_{T \to \infty} \frac{\#\{n : |a_n - c| < T\}}{\omega_p T^p} = \Delta,$$

uniformly in $c \in \mathbb{R}^p$, where ω_p is the volume of the unit ball,
Properties of S-sets

Theorem (Kolbasina 2008)

1. Each S-set $A = (a_n)$ is translation–bounded, i.e.,
 \[
 \forall \ c \in \mathbb{R}^p \quad \# \{ n : |a_n - c| < 1 \} \leq \text{const} < \infty,
 \]

2. has a uniform density $\Delta = \Delta(A)$, $0 < \Delta < \infty$, i.e.,
 \[
 \exists \lim_{T \to \infty} \frac{\# \{ n : |a_n - c| < T \}}{\omega_p T^p} = \Delta,
 \]
 uniformly in $c \in \mathbb{R}^p$, where ω_p is the volume of the unit ball,

3. is a bounded perturbation of the square lattice $\Delta^{-1/p} \mathbb{Z}^p$, i.e., a uniformly spread set in the sense of Laczkovich
 \[
 a_k = \Delta^{-1/p} k + \varphi(k), \quad k \in \mathbb{Z}^p, \quad \varphi : \mathbb{Z}^p \to \mathbb{R}^p \text{ bounded}
 \]
 for a suitable indexing of the set A.
Transportation measure and distance

Transportation measure and distance

between measures ν_1 and ν_2 is a measure γ such that

$$\int \int_{R^p \times R^p} \phi(x) \, d\gamma(x, y) = \int_{R^p} \phi(x) \, d\nu_1(x),$$

$$\int \int_{R^p \times R^p} \phi(y) \, d\gamma(x, y) = \int_{R^p} \phi(y) \, d\nu_2(y),$$

for all continuous functions $\phi: R^p \to R$ with a compact support.

The transportation distance $\text{Tra}(\nu_1, \nu_2)$ is the number

$$\text{Tra}(\nu_1, \nu_2) = \inf_{\gamma} \sup \{ |x - y| : x, y \in \text{supp} \gamma \},$$

where the infimum is taken over all transportation measures (M. Sodin, B. Tsirelson 2009).

S. Favorov (Kharkov national university)

Discrete unbounded sets

Istanbul, March, 2013
Transportation measure and distance

Transportation measure between measures ν_1 and ν_2 is a measure γ such that

$$\int \int_{\mathbb{R}^p \times \mathbb{R}^p} \varphi(x) \, d\gamma(x, y) = \int_{\mathbb{R}^p} \varphi(x) \, d\nu_1(x),$$

$$\int \int_{\mathbb{R}^p \times \mathbb{R}^p} \varphi(y) \, d\gamma(x, y) = \int_{\mathbb{R}^p} \varphi(y) \, d\nu_2(y)$$

for all continuous functions $\varphi : \mathbb{R}^p \to \mathbb{R}$ with a compact support.
Transportation measure and distance

Transportation measure between measures ν_1 and ν_2 is a measure γ such that

$$
\int \int_{\mathbb{R}^p \times \mathbb{R}^p} \varphi(x) \ d\gamma(x,y) = \int_{\mathbb{R}^p} \varphi(x) \ d\nu_1(x),
$$

$$
\int \int_{\mathbb{R}^p \times \mathbb{R}^p} \varphi(y) \ d\gamma(x,y) = \int_{\mathbb{R}^p} \varphi(y) \ d\nu_2(y)
$$

for all continuous functions $\varphi : \mathbb{R}^p \rightarrow \mathbb{R}$ with a compact support.

The transportation distance $\text{Tra}(\nu_1, \nu_2)$ is the number

$$
\text{Tra}(\nu_1, \nu_2) = \inf_{\gamma} \sup \{|x - y| : x, y \in \text{supp}\gamma\},
$$

where the infimum is taken over all transportation measures (M. Sodin, B. Tsirelson 2009).
A continual analog
A continual analog

Theorem (Dudko & me 2011)

If a transportation distance between a measure $\nu \not\equiv 0$ and any its shift ν^z is uniformly bounded with respect to $z \in \mathbb{R}^p$, then
A continual analog

Theorem (Dudko & me 2011)

If a transportation distance between a measure $\nu \not= 0$ and any its shift ν^z is uniformly bounded with respect to $z \in \mathbb{R}^p$, then

a positive finite density

$$\Delta = \lim_{T \to \infty} \nu(\{x : |x - c| < T\})(\omega_p T^p)^{-1}$$

exists uniformly with respect to $c \in \mathbb{R}^p$,

A continual analog

Theorem (Dudko & me 2011)

If a transportation distance between a measure $\nu \neq 0$ and any its shift ν^z is uniformly bounded with respect to $z \in \mathbb{R}^p$, then

a positive finite density

$$\Delta = \lim_{T \to \infty} \nu(\{x : |x - c| < T\})(\omega_p T^p)^{-1}$$

exists uniformly with respect to $c \in \mathbb{R}^p$,

$$\text{Tra}(\nu, \Delta^{-1/p} m_p) < \infty,$$ where m_p is the Lebesgue measure in \mathbb{R}^p.
Almost periodic discrete sets

A continuous mapping \(f: \mathbb{R}^p \rightarrow \mathbb{R}^l \) is almost periodic, if for any \(\varepsilon > 0 \) the set of \(\varepsilon \)-almost periods of \(f \) \(\{ \tau \in \mathbb{R}^p : \sup_{x \in \mathbb{R}^p} |f(x + \tau) - f(x)| < \varepsilon \} \) is a relatively dense set in \(\mathbb{R}^p \), i.e., there is \(r = r(\varepsilon) < \infty \) such that any ball of radius \(r \) contains an \(\varepsilon \)-almost period of \(f \).

A discrete set \(A = (a_n) \subset \mathbb{R}^p \) is almost periodic, if for any continuous function \(\phi \) in \(\mathbb{R}^p \) with a compact support the sum \(\sum_n \phi(x + a_n) \) is an almost periodic function in \(x \in \mathbb{R}^p \).

Every discrete set of the form \(a_k = \Delta - \frac{1}{p} k + \phi(k) \), \(k \in \mathbb{Z}^p \), with an almost periodic mapping \(\phi: \mathbb{R}^p \rightarrow \mathbb{R}^p \) is almost periodic.

Conversely, for \(p = 1 \) every almost periodic discrete set has such form with an almost periodic mapping \(\phi: \mathbb{R} \rightarrow \mathbb{R} \). The last assertion does not valid for \(p > 1 \).
Almost periodic discrete sets

A continuous mapping \(f : \mathbb{R}^p \to \mathbb{R}^l \) is almost periodic, if for any \(\varepsilon > 0 \) the set of \(\varepsilon \)-almost periods of \(f \)

\[
\{ \tau \in \mathbb{R}^p : \sup_{x \in \mathbb{R}^p} |f(x + \tau) - f(x)| < \varepsilon \}
\]

is a relatively dense set in \(\mathbb{R}^p \), i.e., there is \(r = r(\varepsilon) < \infty \) such that any ball of radius \(r \) contains an \(\varepsilon \)-almost period of \(f \).
Almost periodic discrete sets

A continuous mapping $f : \mathbb{R}^p \to \mathbb{R}^l$ is *almost periodic*, if for any $\varepsilon > 0$ the set of ε-almost periods of f

$$\{ \tau \in \mathbb{R}^p : \sup_{x \in \mathbb{R}^p} |f(x + \tau) - f(x)| < \varepsilon \}$$

is a relatively dense set in \mathbb{R}^p, i.e., there is $r = r(\varepsilon) < \infty$ such that any ball of radius r contains an ε-almost period of f.

A discrete set $A = (a_n) \subset \mathbb{R}^p$ is *almost periodic*, if for any continuous function ϕ in \mathbb{R}^p with a compact support the sum $\sum_n \phi(x + a_n)$ is an almost periodic function in $x \in \mathbb{R}^p$.
Almost periodic discrete sets

A continuous mapping $f : \mathbb{R}^p \to \mathbb{R}^l$ is almost periodic, if for any $\varepsilon > 0$ the set of ε-almost periods of f

$$\{ \tau \in \mathbb{R}^p : \sup_{x \in \mathbb{R}^p} |f(x + \tau) - f(x)| < \varepsilon \}$$

is a relatively dense set in \mathbb{R}^p, i.e., there is $r = r(\varepsilon) < \infty$ such that any ball of radius r contains an ε-almost period of f.

A discrete set $A = (a_n) \subset \mathbb{R}^p$ is almost periodic, if for any continuous function ϕ in \mathbb{R}^p with a compact support the sum $\sum_n \phi(x + a_n)$ is an almost periodic function in $x \in \mathbb{R}^p$.

Every discrete set of the form

$$a_k = \Delta^{-1/p} k + \varphi(k), \quad k \in \mathbb{Z}^p,$$

with an almost periodic mapping $\varphi(x) : \mathbb{R}^p \to \mathbb{R}^p$ is almost periodic. Conversely, for $p = 1$ every almost periodic discrete set has such form with an almost periodic mapping $\varphi : \mathbb{R} \to \mathbb{R}$. The last assertion does not valid for $p > 1$.
Almost periodic discrete sets and quasicrystals

Theorem (Rashkovskii, Ronkin & me 1998)

A discrete set $A \subset \mathbb{R}^p$ is almost periodic if and only if for each $\varepsilon > 0$ the set of ε-almost periods of A

$$\{ \tau \in \mathbb{R}^p : \text{dist}(A, A + \tau) < \varepsilon \}$$

is relatively dense in \mathbb{R}^p.

Each almost periodic discrete set is an S-set, hence it is translation-bounded and has a uniform density $\Delta \in (0, \infty)$.

A positive answer on Lagarias' question (2000):

Theorem (F. 2012)

If $A \subset \mathbb{R}^p$ is an almost periodic discrete set of a finite type, i.e., $A - A$ is discrete, then A is a pure crystal, i.e., there exists a lattice L and $c_1, c_2, ..., c_r \in \mathbb{R}^p$ such that

$$A = \bigcup_{j=1}^{r} (L + c_j).$$
Theorem (Rashkovskii, Ronkin & me 1998)

A discrete set $A \subset \mathbb{R}^p$ is almost periodic if and only if for each $\varepsilon > 0$ the set of ε-almost periods of A

$$\{ \tau \in \mathbb{R}^p : \text{dist}(A, A + \tau) < \varepsilon \}$$

is relatively dense in \mathbb{R}^p.
Theorem (Rashkovskii, Ronkin & me 1998)

A discrete set $A \subset \mathbb{R}^p$ is almost periodic if and only if for each $\varepsilon > 0$ the set of ε-almost periods of A

$$\{ \tau \in \mathbb{R}^p : \text{dist}(A, A + \tau) < \varepsilon \}$$

is relatively dense in \mathbb{R}^p.

Each almost periodic discrete set is an S-set, hence it is translation-bounded and has a uniform density $\Delta \in (0, \infty)$.
A discrete set \(A \subset \mathbb{R}^p \) is almost periodic if and only if for each \(\varepsilon > 0 \) the set of \(\varepsilon \)-almost periods of \(A \)

\[
\{ \tau \in \mathbb{R}^p : \text{dist}(A, A + \tau) < \varepsilon \}
\]
is relatively dense in \(\mathbb{R}^p \).

Each almost periodic discrete set is an \(S \)-set, hence it is translation-bounded and has a uniform density \(\Delta \in (0, \infty) \).

A positive answer on Lagarias’ question (2000):
Almost periodic discrete sets and quasicrystals

Theorem (Rashkovskii, Ronkin & me 1998)

A discrete set $A \subset \mathbb{R}^p$ is almost periodic if and only if for each $\varepsilon > 0$ the set of ε-almost periods of A

$$\{ \tau \in \mathbb{R}^p : \text{dist}(A, A + \tau) < \varepsilon \}$$

is relatively dense in \mathbb{R}^p.

Each almost periodic discrete set is an S-set, hence it is translation-bounded and has a uniform density $\Delta \in (0, \infty)$.

A positive answer on Lagarias’ question (2000):

Theorem (F. 2012)

If $A \subset \mathbb{R}^p$ is an almost periodic discrete set of a finite type, i.e., $A - A$ is discrete, then A is a pure crystal, i.e., there exists a lattice L and $c_1, c_2, \ldots, c_r \in \mathbb{R}^p$ such that $A = \bigcup_{j=1}^r (L + c_j)$.
Consider a finite exponential sum

\[S(z) = \sum_{n} a_n e^{i\lambda_n z}, \quad \lambda_n \in \mathbb{R}, \quad a_n \in \mathbb{C}. \]

Theorem (Girya & me 2012)
If differences of zeros of \(S(z) \) form a discrete set, then \(S(z) \) is periodic and, therefore,

\[S(z) = Ke^{i\beta z}N \prod_{k=1} e^{i(\omega z + b_k)}, \quad \omega, \beta \in \mathbb{R}, \quad K, b_k \in \mathbb{C}. \]

The result is valid for entire almost periodic functions of exponential type with zeros in the horizontal strip of a finite width (so-called class \(\Delta \)) as well.

S. Favorov (Kharkov national university)
Discrete unbounded sets
Istanbul, March, 2013
Zeros of exponential sums

Consider a finite exponential sum

$$S(z) = \sum_{n} a_n e^{i\lambda_n z}, \quad \lambda_n \in \mathbb{R}, \quad a_n \in \mathbb{C}.$$
Zeros of exponential sums

Consider a finite exponential sum

\[S(z) = \sum_{n} a_n e^{i\lambda_n z}, \quad \lambda_n \in \mathbb{R}, \quad a_n \in \mathbb{C}. \]

Theorem (Girya & me 2012)

If differences of zeros of \(S(z) \) form a discrete set, then \(S(z) \) is periodic and, therefore,

\[S(z) = K e^{i\beta z} \prod_{k=1}^{N} \sin(\omega z + b_k), \quad \omega, \beta \in \mathbb{R}, \quad K, b_k \in \mathbb{C}. \]
Zeros of exponential sums

Consider a finite exponential sum

\[S(z) = \sum_{n} a_n e^{i \lambda_n z}, \quad \lambda_n \in \mathbb{R}, \quad a_n \in \mathbb{C}. \]

Theorem (Girya & me 2012)

If differences of zeros of \(S(z) \) form a discrete set, then \(S(z) \) is periodic and, therefore,

\[S(z) = Ke^{i \beta z} \prod_{k=1}^{N} \sin(\omega z + b_k), \quad \omega, \beta \in \mathbb{R}, \quad K, b_k \in \mathbb{C}. \]

The result is valid for entire almost periodic functions of exponential type with zeros in the horizontal strip of a finite width (so-called class \(\Delta \)) as well.
Almost periodic signed multiple discrete sets

A set \(A = \{ (x, m(x)) : m(x) \neq 0 \} \), where \(m : \mathbb{R}^p \rightarrow \mathbb{Z} \) is a mapping with a discrete support, is called a signed multiple discrete set.

A signed multiple discrete set \(A \) is almost periodic, if for any continuous function \(\phi \) in \(\mathbb{R}^p \) with a compact support the sum

\[
\sum_{a \in \mathbb{R}^p} m(a) \phi(x + a)
\]

is an almost periodic function in \(x \in \mathbb{R}^p \).

Theorem (Kolbasina & me 2012)

There is a signed multiple discrete set such that (*) is almost periodic for any test-function \(\phi \in C^1 \), but there is a continuous test-function \(\phi \) such that (*) is not almost periodic;

there is an almost periodic signed discrete set \(A = \{ (x, m(x)) : m(x) = \pm 1 \} \) such that the discrete set \(A_0 = \{ x : m(x) \neq 0 \} \) is not almost periodic.
Almost periodic signed multiple discrete sets

A set $A = \{(x, m(x)) : m(x) \neq 0\}$, where $m : \mathbb{R}^p \to \mathbb{Z}$ is a mapping with a discrete support, is called signed multiple discrete set.

Theorem (Kolbasina & me 2012)

There is a signed multiple discrete set such that (\ast) is almost periodic for any test–function $\phi \in C^1$, but there is a continuous test–function ϕ such that (\ast) is not almost periodic; there is an almost periodic signed discrete set $A = \{(x, m(x)) : m(x) = \pm 1\}$ such that the discrete set $A_0 = \{x : m(x) \neq 0\}$ is not almost periodic.
Almost periodic signed multiple discrete sets

A set \(A = \{(x, m(x)) : m(x) \neq 0\} \), where \(m : \mathbb{R}^p \to \mathbb{Z} \) is a mapping with a discrete support, is called *signed multiple discrete set*.

A signed multiple discrete set \(A \) is *almost periodic*, if for any continuous function \(\phi \) in \(\mathbb{R}^p \) with a compact support the sum

\[
\sum_{a \in \mathbb{R}^p} m(a)\phi(x + a)
\]

is an almost periodic function in \(x \in \mathbb{R}^p \).

Theorem (Kolbasina & me 2012)

There is a signed multiple discrete set such that (\(*\)) is almost periodic for any test–function \(\phi \in \mathcal{C}^1 \), but there is a continuous test–function \(\phi \) such that (\(*\)) is not almost periodic; there is an almost periodic signed discrete set \(A = \{(x, m(x)) : m(x) = \pm 1\} \) such that the discrete set \(A_0 = \{x : m(x) \neq 0\} \) is not almost periodic.
Almost periodic signed multiple discrete sets

A set \(A = \{(x, m(x)) : m(x) \neq 0\} \), where \(m : \mathbb{R}^p \rightarrow \mathbb{Z} \) is a mapping with a discrete support, is called signed multiple discrete set. A signed multiple discrete set \(A \) is \textit{almost periodic}, if for any continuous function \(\phi \) in \(\mathbb{R}^p \) with a compact support the sum

\[
\sum_{a \in \mathbb{R}^p} m(a)\phi(x + a)
\]

\((*) \)

is an almost periodic function in \(x \in \mathbb{R}^p \).

\textbf{Theorem (Kolbasina & me 2012)}

There is a signed multiple discrete set such that \((*) \) is almost periodic for any test–function \(\phi \in C^1 \), but there is a continuous test–function \(\phi \) such that \((*) \) is not almost periodic;
Almost periodic signed multiple discrete sets

A set \(A = \{(x, m(x)) : m(x) \neq 0\} \), where \(m : \mathbb{R}^p \to \mathbb{Z} \) is a mapping with a discrete support, is called signed multiple discrete set.

A signed multiple discrete set \(A \) is almost periodic, if for any continuous function \(\phi \) in \(\mathbb{R}^p \) with a compact support the sum

\[
\sum_{a \in \mathbb{R}^p} m(a) \phi(x + a)
\]

is an almost periodic function in \(x \in \mathbb{R}^p \).

\textbf{Theorem (Kolbasina & me 2012)}

There is a signed multiple discrete set such that (*) is almost periodic for any test–function \(\phi \in C^1 \), but there is a continuous test–function \(\phi \) such that (*) is not almost periodic;

there is an almost periodic signed discrete set

\(A = \{(x, m(x)) : m(x) = \pm1\} \) such that the discrete set

\(A_0 = \{x : m(x) \neq 0\} \) is not almost periodic.
Theorem (Kolbasina & me 2012)
Each almost periodic signed multiple discrete set
\[A = \{ (x, m(x)) \} \]
is translation-bounded, i.e.,
\[\sum_{x} |x - c| < 1 \]
\[|m(x)| \leq \text{const} < \infty \]
uniformly in \(c \in \mathbb{R}^p \), it has a uniform density \(\Delta = \Delta(A) \), \(-\infty < \Delta < \infty \), i.e.,
\[\exists \lim_{T \to \infty} \sum_{x} |x - c| < T m(x) \omega_p T^p = \Delta, \]
uniformly with respect to \(c \in \mathbb{R}^p \).
Theorem (Kolbasina & me 2012)

Each almost periodic signed multiple discrete set $A = \{(x, m(x))\}$ is translation-bounded, i.e.,

$$\sum_{x: |x-c|<1} |m(x)| \leq \text{const} < \infty$$

uniformly in $c \in \mathbb{R}^p$,

Some properties
Some properties

Theorem (Kolbasina & me 2012)

Each almost periodic signed multiple discrete set \(A = \{(x, m(x))\} \) is translation-bounded, i.e.,

\[
\sum_{x:|x-c|<1} |m(x)| \leq \text{const} < \infty
\]

uniformly in \(c \in \mathbb{R}^p \),

it has a uniform density \(\Delta = \Delta(A) \), \(-\infty < \Delta < \infty\), i.e.,

\[
\exists \lim_{T \to \infty} \frac{\sum_{x:|x-c|<T} m(x)}{\omega_p T^p} = \Delta,
\]

uniformly with respect to \(c \in \mathbb{R}^p \).
Thanks for your attention!