Multidimensional spectral order

Artur Płaneta

University of Agriculture in Krakow, Poland

This presentation is based on the joint work with J. Stochel This work is partially supported by MNiSzW Grant N N201 526638. 13 January 2012, Istanbul

1 Spectral order \preccurlyeq

- Introduction
- \preccurlyeq and \leqslant -comparison

2 Multidimensional spectral order

- General case
- Spectral order once more
- Monomials
- Monomials and positive operators

Notation

• *H*- complex Hilbert space,

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Notation

- *H* complex Hilbert space,
- By an operator in a complex Hilbert space H we understand a linear mapping A: H ⊇ D(A) → H defined on a linear subspace D(A) of H, called the *domain* of A.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 Denote by B(H) the C*-algebra of all bounded operators A in *H* with D(A) = *H*. As usual, I = I_H stands for the identity operator on *H*.

글 > 글

 Denote by B(H) the C*-algebra of all bounded operators A in *H* with D(A) = *H*. As usual, I = I_H stands for the identity operator on *H*.

•
$$\boldsymbol{B}_{s}(\mathcal{H}) = \{A \in \boldsymbol{B}(\mathcal{H}) \colon A = A^{*}\}$$

문 문 문

- Denote by B(H) the C*-algebra of all bounded operators A in *H* with D(A) = *H*. As usual, I = I_H stands for the identity operator on *H*.
- $\boldsymbol{B}_{s}(\mathcal{H}) = \{A \in \boldsymbol{B}(\mathcal{H}) \colon A = A^{*}\}$
- Given two selfadjoint operators A, B ∈ B(H), we write A ≤ B whenever (Ah, h) ≤ (Bh, h) for all h ∈ H.

イロト イポト イヨト イヨト

• A densely defined operator A in \mathcal{H} is said to be *selfadjoint* if $A = A^*$ and *positive* if $\langle Ah, h \rangle \ge 0$ for all $h \in \mathscr{D}(A)$.

(D) (A) (A) (A)

æ

- A densely defined operator A in \mathcal{H} is said to be *selfadjoint* if $A = A^*$ and *positive* if $\langle Ah, h \rangle \ge 0$ for all $h \in \mathscr{D}(A)$.
- If A and B are positive selfadjoint operators in \mathcal{H} such that $\mathscr{D}(B^{1/2}) \subseteq \mathscr{D}(A^{1/2})$ and $||A^{1/2}h|| \leq ||B^{1/2}h||$ for all $h \in \mathscr{D}(B^{1/2})$, then we write $A \leq B$.

(D) (A) (A) (A)

- A densely defined operator A in \mathcal{H} is said to be *selfadjoint* if $A = A^*$ and *positive* if $\langle Ah, h \rangle \ge 0$ for all $h \in \mathscr{D}(A)$.
- If A and B are positive selfadjoint operators in \mathcal{H} such that $\mathscr{D}(B^{1/2}) \subseteq \mathscr{D}(A^{1/2})$ and $||A^{1/2}h|| \leq ||B^{1/2}h||$ for all $h \in \mathscr{D}(B^{1/2})$, then we write $A \leq B$.
- The last definition of ≤ is easily seen to be consistent with that for bounded operators.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Remark

In general inequality $0 \leq A \leq B$, where $A, B \in B(\mathcal{H})$, may not imply $A^n \leq B^n$, where $n \in \mathbb{N}$.

Theorem (M. P. Olson, A. P., J. Stochel)

Let A and B be positive selfadjoint operators in \mathcal{H} . Then the following conditions are equivalent:

(i)
$$A^n \leq B^n$$
 for all $n \in \mathbb{N}$,

(ii) $\{n \in \mathbb{N} : A^n \leq B^n\}$ is infinite,

(D) (A) (A) (A) (A)

Remark

In general inequality $0 \leq A \leq B$, where $A, B \in B(\mathcal{H})$, may not imply $A^n \leq B^n$, where $n \in \mathbb{N}$.

Theorem (M. P. Olson, A. P., J. Stochel)

Let A and B be positive selfadjoint operators in \mathcal{H} . Then the following conditions are equivalent:

(i)
$$A^n \leq B^n$$
 for all $n \in \mathbb{N}$,
(ii) $\{n \in \mathbb{N} : A^n \leq B^n\}$ is infinite,
(iii) $A \leq B$.

The definition of spectral order

• Let $A, B \in B_s(\mathcal{H})$ with spectral measure E_A and E_B , respectively. we write $A \preccurlyeq B$ if $E_B((-\infty, x]) \leqslant E_A((-\infty, x])$ for all $x \in \mathbb{R}$.

э

The definition of spectral order

- Let $A, B \in B_s(\mathcal{H})$ with spectral measure E_A and E_B , respectively. we write $A \preccurlyeq B$ if $E_B((-\infty, x]) \leqslant E_A((-\infty, x])$ for all $x \in \mathbb{R}$.
- The relation ≼ is a partial order in the set of all selfadjoint operators in H, but it is not a vector order!

The definition of spectral order

- Let $A, B \in B_s(\mathcal{H})$ with spectral measure E_A and E_B , respectively. we write $A \preccurlyeq B$ if $E_B((-\infty, x]) \leqslant E_A((-\infty, x])$ for all $x \in \mathbb{R}$.
- The relation ≼ is a partial order in the set of all selfadjoint operators in H, but it is not a vector order!
- This definition was introduced in 1971 by Olson.

・ロト ・ 同ト ・ ヨト ・ ヨト

Lattices

Kadison (1951): (B_s(H), ≤) is an anti-lattice, i.e., for any A, B ∈ B_s(H), the supremum of the set {A, B} exists if and only if A, B are comparable (either A ≤ B or B ≤ A).

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Lattices

- Kadison (1951): (B_s(H), ≤) is an anti-lattice, i.e., for any A, B ∈ B_s(H), the supremum of the set {A, B} exists if and only if A, B are comparable (either A ≤ B or B ≤ A).
- Sherman (1951): If the set of all selfadjoint elements of a C^* -algebra \mathcal{A} with the usual order forms a lattice, then \mathcal{A} is commutative.

Lattices

- Kadison (1951): (B_s(H), ≤) is an anti-lattice, i.e., for any A, B ∈ B_s(H), the supremum of the set {A, B} exists if and only if A, B are comparable (either A ≤ B or B ≤ A).
- Sherman (1951): If the set of all selfadjoint elements of a C^* -algebra \mathcal{A} with the usual order forms a lattice, then \mathcal{A} is commutative.
- Olson (1971): If S is the set of all selfadjoint elements of a von Neumann algebra V in B(H) then, (S, ≼) is a conditionally complete lattice.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (T. Kato)

If $A_1,\ldots,A_k\in oldsymbol{B}(\mathcal{H})$ are positive, then

$$\lim_{n\to\infty} (A_1^n + \ldots + A_k^n)^{\frac{1}{n}} h = \left(\bigvee_{j=1}^k A_j\right) h$$

for every $h \in \mathcal{H}$.

イロン イヨン イヨン イヨン

æ

The definition of spectral order for unbounded operators

Given two selfadjoint operators A and B in \mathcal{H} with spectral measure E_A and E_B , respectively, we write $A \preccurlyeq B$ if $E_B((-\infty, x]) \leqslant E_A((-\infty, x])$ for all $x \in \mathbb{R}$.

In the case of unbounded operators closed supports of E_A and E_B are not compact.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposition

Let A and B be selfadjoint operators in \mathcal{H} such that $A \preccurlyeq B$. Then $\langle Ah, h \rangle \leqslant \langle Bh, h \rangle$ for all $h \in \mathscr{D}(A) \cap \mathscr{D}(B)$. Moreover, if A and B are bounded from below, then $\mathscr{D}(B) \subseteq \mathscr{D}(A)$.

Corollary (Olson)

If $A, B \in B_s(\mathcal{H})$, then $A \preccurlyeq B \Rightarrow A \leqslant B$.

Remark

In general, the relation $A \preccurlyeq B$ implies neither $\mathscr{D}(B) \subseteq \mathscr{D}(A)$ nor $\mathscr{D}(A) \subseteq \mathscr{D}(B)$. It is even possible to find operators A and B such that $A \preccurlyeq B$ and $\mathscr{D}(A) \cap \mathscr{D}(B) = \{0\} \neq \mathcal{H}$.

・ロト ・聞 ト ・ ヨト ・ ヨトー

Proposition

Let A and B be selfadjoint operators in \mathcal{H} such that $A \preccurlyeq B$. Then $\langle Ah, h \rangle \leqslant \langle Bh, h \rangle$ for all $h \in \mathscr{D}(A) \cap \mathscr{D}(B)$. Moreover, if A and B are bounded from below, then $\mathscr{D}(B) \subseteq \mathscr{D}(A)$.

Corollary (Olson)

If $A, B \in B_{s}(\mathcal{H})$, then $A \preccurlyeq B \Rightarrow A \leqslant B$.

Remark

In general, the relation $A \preccurlyeq B$ implies neither $\mathscr{D}(B) \subseteq \mathscr{D}(A)$ nor $\mathscr{D}(A) \subseteq \mathscr{D}(B)$. It is even possible to find operators A and B such that $A \preccurlyeq B$ and $\mathscr{D}(A) \cap \mathscr{D}(B) = \{0\} \neq \mathcal{H}$.

・ロト ・聞 ト ・ ヨト ・ ヨト …

Proposition

Let A and B be selfadjoint operators in \mathcal{H} such that $A \preccurlyeq B$. Then $\langle Ah, h \rangle \leqslant \langle Bh, h \rangle$ for all $h \in \mathscr{D}(A) \cap \mathscr{D}(B)$. Moreover, if A and B are bounded from below, then $\mathscr{D}(B) \subseteq \mathscr{D}(A)$.

Corollary (Olson)

If $A, B \in \boldsymbol{B}_{s}(\mathcal{H})$, then $A \preccurlyeq B \Rightarrow A \leqslant B$.

Remark

In general, the relation $A \preccurlyeq B$ implies neither $\mathscr{D}(B) \subseteq \mathscr{D}(A)$ nor $\mathscr{D}(A) \subseteq \mathscr{D}(B)$. It is even possible to find operators A and B such that $A \preccurlyeq B$ and $\mathscr{D}(A) \cap \mathscr{D}(B) = \{0\} \neq \mathcal{H}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Example

• Let A_1 be the selfadjoint operator of multiplication by a Borel function $\phi \colon \mathbb{R} \to \mathbb{R}$ in $L^2(\mathbb{R})$ and let A_2 be the selfadjoint operator of multiplication by the identity function on \mathbb{R} in $L^2(\mathbb{R})$.

Example

- Let A_1 be the selfadjoint operator of multiplication by a Borel function $\phi \colon \mathbb{R} \to \mathbb{R}$ in $L^2(\mathbb{R})$ and let A_2 be the selfadjoint operator of multiplication by the identity function on \mathbb{R} in $L^2(\mathbb{R})$.
- Consider the continuous function ϕ :

$$\phi(x) = \begin{cases} -x^2 & \text{if } x \in (-\infty, -1], \\ x & \text{if } x \in (-1, 1], \\ \sqrt{x} & \text{if } x \in [1, \infty). \end{cases}$$

Example

- Let A_1 be the selfadjoint operator of multiplication by a Borel function $\phi \colon \mathbb{R} \to \mathbb{R}$ in $L^2(\mathbb{R})$ and let A_2 be the selfadjoint operator of multiplication by the identity function on \mathbb{R} in $L^2(\mathbb{R})$.
- Consider the continuous function ϕ :

$$\phi(x) = \begin{cases} -x^2 & \text{if } x \in (-\infty, -1], \\ x & \text{if } x \in (-1, 1], \\ \sqrt{x} & \text{if } x \in [1, \infty). \end{cases}$$

• Note that the spectral measure E_2 of A_2 is given by $E_2(\sigma)h = \chi_{\sigma}h$ for $h \in L^2(\mathbb{R})$.

Example

- Let A_1 be the selfadjoint operator of multiplication by a Borel function $\phi \colon \mathbb{R} \to \mathbb{R}$ in $L^2(\mathbb{R})$ and let A_2 be the selfadjoint operator of multiplication by the identity function on \mathbb{R} in $L^2(\mathbb{R})$.
- Consider the continuous function ϕ :

$$\phi(x) = \begin{cases} -x^2 & \text{if } x \in (-\infty, -1], \\ x & \text{if } x \in (-1, 1], \\ \sqrt{x} & \text{if } x \in [1, \infty). \end{cases}$$

- Note that the spectral measure E_2 of A_2 is given by $E_2(\sigma)h = \chi_{\sigma}h$ for $h \in L^2(\mathbb{R})$.
- In turn, the spectral measure E_1 of A_1 takes the form $E_1(\sigma) = E_2(\phi^{-1}(\sigma))$ for Borel subsets σ of \mathbb{R} .

Example

• Since ϕ is strictly increasing and $\phi(x)\leqslant x$ for all $x\in\mathbb{R},$ we see that

$$E_2((-\infty,x]) = E_1((-\infty,\phi(x)]) \leqslant E_1((-\infty,x]), \quad x \in \mathbb{R},$$

which means that $A_1 \preccurlyeq A_2$.

Example

• Since ϕ is strictly increasing and $\phi(x) \leqslant x$ for all $x \in \mathbb{R}$, we see that

$$\mathsf{E}_2((-\infty,x]) = \mathsf{E}_1((-\infty,\phi(x)]) \leqslant \mathsf{E}_1((-\infty,x]), \quad x \in \mathbb{R},$$

which means that $A_1 \preccurlyeq A_2$.

• Define two functions $h_1, h_2 \in L^2(\mathbb{R})$ by

$$h_1(x) = \begin{cases} 0 & \text{if } x \in (-\infty, 1], \\ x^{-3/2} & \text{if } x \in (1, \infty), \end{cases}$$
$$h_2(x) = \begin{cases} |x|^{-5/2} & \text{if } x \in (-\infty, -1], \\ 0 & \text{if } x \in (-1, \infty). \end{cases}$$

Example

• Since ϕ is strictly increasing and $\phi(x)\leqslant x$ for all $x\in\mathbb{R}$, we see that

$$E_2((-\infty,x]) = E_1((-\infty,\phi(x)]) \leqslant E_1((-\infty,x]), \quad x \in \mathbb{R},$$

which means that $A_1 \preccurlyeq A_2$.

• Define two functions $h_1, h_2 \in L^2(\mathbb{R})$ by

$$h_1(x) = \begin{cases} 0 & \text{if } x \in (-\infty, 1], \\ x^{-3/2} & \text{if } x \in (1, \infty), \end{cases}$$
$$h_2(x) = \begin{cases} |x|^{-5/2} & \text{if } x \in (-\infty, -1], \\ 0 & \text{if } x \in (-1, \infty). \end{cases}$$

• Then $h_1 \in \mathscr{D}(A_1) \setminus \mathscr{D}(A_2)$ and $h_2 \in \mathscr{D}(A_2) \setminus \mathscr{D}(A_1)$.

Theorem (M. P. Olson, M. Fujii, I. Kasahara, A. P., J. Stochel)

If A and B are selfadjoint operators in \mathcal{H} , then the following conditions are equivalent:

- (i) $A \preccurlyeq B$,
- (ii) $f(A) \leq f(B)$ for each bounded continuous monotonically increasing function $f : \mathbb{R} \to [0, \infty)$,
- (iii) $f(A) \leq f(B)$ for each bounded monotonically increasing function $f : \mathbb{R} \to \mathbb{R}$.

(D) (A) (A) (A) (A)

Definitions

•
$$\mathscr{D}^{\infty}(A) = \bigcap_{n=1}^{\infty} \mathscr{D}(A^n).$$

Artur Płaneta Multidimensional spectral order

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

- $\mathscr{D}^{\infty}(A) = \bigcap_{n=1}^{\infty} \mathscr{D}(A^n).$
- An element of

$$\mathscr{B}(A) = \bigcup_{a>0} \{h \in \mathscr{D}^{\infty}(A) \colon \exists_{c>0} \forall_{n \ge 0} \|A^n h\| \leqslant ca^n\}$$

is called a *bounded vector* of A.

イロン イヨン イヨン イヨン

3

Theorem

If A and B are positive selfadjoint operators in \mathcal{H} , then the following conditions are equivalent:

- (i) $A \preccurlyeq B$,
- (ii) $\mathscr{D}^{\infty}(B) \subseteq \mathscr{D}^{\infty}(A)$ and the set $\mathscr{I}_{A,B}(h)$ is unbounded for all $h \in \mathscr{D}^{\infty}(B)$,
- (iii) $\mathscr{B}(B) \subseteq \mathscr{D}^{\infty}(A)$ and the set $\mathscr{I}_{A,B}(h)$ is unbounded for all $h \in \mathscr{B}(B)$,
- (iv) $\mathscr{B}(B) \subseteq \mathscr{B}(A)$ and the set $\mathscr{I}_{A,B}(h)$ is unbounded for all $h \in \mathscr{B}(B)$,

where $\mathscr{I}_{A,B}(h) := \{s \in [0,\infty) \colon \langle A^s h, h \rangle \leqslant \langle B^s h, h \rangle \}$ for $h \in \mathscr{D}^{\infty}(A) \cap \mathscr{D}^{\infty}(B).$

イロト イポト イヨト イヨト

æ

Corollary

Let A_1 and A_2 be positive selfadjoint operators in \mathcal{H} . Assume that $\{k_n\}_{n=1}^{\infty} \subseteq \mathbb{N}$ and $\{r_n\}_{n=1}^{\infty} \subseteq [1,\infty)$ are sequences such that $\lim_{n\to\infty} k_n = \infty$ and $\lim_{n\to\infty} \inf_{n\to\infty} \frac{k_n}{\sqrt{r_n}} \leq 1$. Then the following conditions are equivalent:

(i)
$$A_1 \preccurlyeq A_2$$
,
(ii) $A_1^n \preccurlyeq A_2^n$ for all $n \ge 0$,
(iii) $A_1^n \leqslant A_2^n$ for all $n \ge 0$,
(iv) $A_1^{k_n} \leqslant r_n A_2^{k_n}$ for all $n \ge 1$

Let us consider two-dimensional Hilbert space $\mathcal{H} = \mathbb{C}^2$. Let A and B_{θ} be the matrices given by

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } B_{\theta} = \begin{bmatrix} 2 & 1 \\ 1 & \theta \end{bmatrix} \text{ for } \theta \in [1, \infty). \tag{1}$$

Clearly, $A \ge 0$ and $B_{\theta} \ge 0$.

Proposition

Let A and B_{θ} be as in (1). Then for every positive integer k there exists $\theta_k \in (2, \infty)$ such that for all $\theta \in [\theta_k, \infty)$, (i) $A^n \leq B_{\theta}^n$ for all n = 0, ..., k, (ii) $A \not\preccurlyeq B_{\theta}$.

・ロト ・回ト ・ヨト ・ヨト

Recall that due to Stone's theorem the infinitesimal generator of a C_0 -semigroup of bounded selfadjoint operators on \mathcal{H} is always selfadjoint.

Theorem

Let $\{T_j(t)\}_{t\geq 0} \subseteq B(\mathcal{H})$ be a C_0 -semigroup of selfadjoint operators and A_j be its infinitesimal generator, j = 1, 2. Then the following conditions are equivalent:

(i)
$$A_1 \preccurlyeq A_2$$
,
(ii) $T_1(t) \preccurlyeq T_2(t)$ for some $t > 0$,
(iii) $T_1(t) \preccurlyeq T_2(t)$ for every $t > 0$,
(iv) $T_1(t) \leqslant T_2(t)$ for some $t > 0$ and
 $E_A((-\infty, x])E_B((-\infty, x]) = E_B((-\infty, x])E_A((-\infty, x])$ for
every $x \in \mathbb{R}$,

(v) $T_1(nt) \leqslant T_2(nt)$ for some t > 0 and for infinitely many $n \in \mathbb{N}$.

 In the multidimensional case we restrict ours considerations to κ-tuples of selfadjoint operators, which consists of commuting operators.

臣

- In the multidimensional case we restrict ours considerations to κ-tuples of selfadjoint operators, which consists of commuting operators.
- We say that selfadjoint operators A and B in \mathcal{H} (spectrally) commute if their spectral measures commute, i.e., $E_A(\sigma)E_B(\tau) = E_B(\tau)E_A(\sigma)$ for all Borel subsets σ, τ of \mathbb{R} .

- In the multidimensional case we restrict ours considerations to κ-tuples of selfadjoint operators, which consists of commuting operators.
- We say that selfadjoint operators A and B in \mathcal{H} (spectrally) commute if their spectral measures commute, i.e., $E_A(\sigma)E_B(\tau) = E_B(\tau)E_A(\sigma)$ for all Borel subsets σ, τ of \mathbb{R} .
- $E_{\mathbf{A}}$ -joint spectral measure of $\mathbf{A} = (A_1, \dots, A_\kappa)$,

イロト イポト イヨト イヨト

Definition

Let $\mathbf{A} = (A_1, \dots, A_{\kappa})$ and $\mathbf{B} = (B_1, \dots, B_{\kappa})$ be a κ -tuples of commuting selfadjoint operators in \mathcal{H} . We write $\mathbf{A} \preccurlyeq \mathbf{B}$ if $E_{\mathbf{B}}((-\infty, x]) \leqslant E_{\mathbf{A}}((-\infty, x])$ for every $x = (x_1, \dots, x_{\kappa}) \in \mathbb{R}^{\kappa}$, where $(-\infty, x] := (-\infty, x_1] \times \dots \times (-\infty, x_{\kappa}]$.

・ロト ・四ト ・ヨト ・ヨト

э

Notation and definitions

• $S(\mathbb{R}^{\kappa}, E)$ - the set of all E - a.e. finite Borel function $f: \mathbb{R}^{\kappa} \to \overline{\mathbb{R}}$, where $\overline{\mathbb{R}} = \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$,

イロン イヨン イヨン イヨン

э

Notation and definitions

• $S(\mathbb{R}^{\kappa}, E)$ - the set of all E - a.e. finite Borel function $f: \mathbb{R}^{\kappa} \to \overline{\mathbb{R}}$, where $\overline{\mathbb{R}} = \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$,

•
$$|\alpha| := \alpha_1 + \ldots + \alpha_\kappa$$
 for $\alpha = (\alpha_1, \ldots, \alpha_\kappa) \in [0, \infty)^\kappa$

イロン イヨン イヨン イヨン

臣

Notation and definitions

• $S(\mathbb{R}^{\kappa}, E)$ - the set of all E - a.e. finite Borel function $f: \mathbb{R}^{\kappa} \to \overline{\mathbb{R}}$, where $\overline{\mathbb{R}} = \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$,

•
$$|\alpha| := \alpha_1 + \ldots + \alpha_\kappa$$
 for $\alpha = (\alpha_1, \ldots, \alpha_\kappa) \in [0, \infty)^\kappa$

•
$$x^{\alpha} := x_1^{\alpha_1} \dots x_{\kappa}^{\alpha_{\kappa}}$$
 for $x = (x_1, \dots, x_{\kappa})$ and $\alpha = (\alpha_1, \dots, \alpha_{\kappa})$.

イロン イヨン イヨン イヨン

臣

General case Spectral order once more Monomials Monomials and positive operators

Definitions

• Let $\iota \in \{1, \ldots, \kappa\}$. We define a relation \leq_{ι} on \mathbb{R}^{κ} requiring that $a \leq_{\iota} b$ if $a_j \leq b_j$ for $j = 1, \ldots, \iota$ and $a_j = b_j$ for $j = \iota + 1, \ldots, \kappa$. If $\iota = \kappa$ we write \leq instead of \leq_{κ} .

General case Spectral order once more Monomials Monomials and positive operators

Definitions

- Let $\iota \in \{1, \ldots, \kappa\}$. We define a relation \leq_{ι} on \mathbb{R}^{κ} requiring that $a \leq_{\iota} b$ if $a_j \leq b_j$ for $j = 1, \ldots, \iota$ and $a_j = b_j$ for $j = \iota + 1, \ldots, \kappa$. If $\iota = \kappa$ we write \leq instead of \leq_{κ} .
- Let $\kappa \in \mathbb{N}_*$, $\Omega \subset \mathbb{R}^{\kappa}$ and $\varphi \colon \Omega \to \overline{\mathbb{R}}$. We say, that φ is a separately increasing function if

$$x \leqslant y \Rightarrow \varphi(x) \leqslant \varphi(y),$$

for every $x, y \in \Omega$.

General case Spectral order once more Monomials Monomials and positive operators

Definitions

- Let $\iota \in \{1, \ldots, \kappa\}$. We define a relation \leq_{ι} on \mathbb{R}^{κ} requiring that $a \leq_{\iota} b$ if $a_j \leq b_j$ for $j = 1, \ldots, \iota$ and $a_j = b_j$ for $j = \iota + 1, \ldots, \kappa$. If $\iota = \kappa$ we write \leq instead of \leq_{κ} .
- Let $\kappa \in \mathbb{N}_*$, $\Omega \subset \mathbb{R}^{\kappa}$ and $\varphi \colon \Omega \to \overline{\mathbb{R}}$. We say, that φ is a separately increasing function if

$$x \leqslant y \Rightarrow \varphi(x) \leqslant \varphi(y),$$

for every $x, y \in \Omega$.

 Let (X, ≤) be a partially ordered set. A set S ⊂ X is called a lower set in X if

$$(y \leq x \land x \in S) \Rightarrow y \in S,$$

for every $x, y \in X$.

General case Spectral order once more Monomials Monomials and positive operators

Lemma

Let $\mathbf{A} = (A_1, \dots, A_{\kappa})$ and $\mathbf{B} = (B_1, \dots, B_{\kappa})$ be a commuting κ -tuple of selfadjoint operators in \mathcal{H} and let $\iota \in \{1, \dots, \kappa\}$. Assume that $A_j = B_j$ for every $j = \iota + 1, \dots, \kappa$. If $\mathbf{A} \preccurlyeq \mathbf{B}$, then

$$E_{\boldsymbol{B}}(\Omega) \leqslant E_{\boldsymbol{A}}(\Omega)$$
 (2)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

for every $\Omega \in \mathfrak{B}(\mathbb{R}^{\kappa})$, which is a lower set in $(\mathbb{R}^{\kappa}, \leq_{\iota})$.

Theorem

Let $\mathbf{A} = (A_1, \dots, A_{\kappa})$ and $\mathbf{B} = (B_1, \dots, B_{\kappa})$ be commuting κ -tuple of selfadjoint operators in \mathcal{H} . Then the following conditions are equivalent:

(i) A ≤ B,
(ii) φ(A) ≤ φ(B) for every separately increasing function φ ∈ S(ℝ^κ, E_A) ∩ S(ℝ^κ, E_B),
(iii) A_i ≤ B_i for every j = 1,..., κ.

イロト イポト イヨト イヨト

Remark

Suppose that dim $\mathcal{H} \ge 1$. Then each Borel function $\varphi \colon \mathbb{R}^{\kappa} \to \mathbb{R}$ satisfying condition

$$\mathbf{A} \preccurlyeq \mathbf{B} \implies \varphi(\mathbf{A}) \preccurlyeq \varphi(\mathbf{B}) \tag{3}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

for every A, B κ -tuples of commuting selfadjoint operators, has to be separately monotonically increasing.

Corollary

Let **A** and **B** be κ -tuples of commuting selfadjoint operators. Then the following conditions are equivalent:

- (i) $A \preccurlyeq B$,
- (ii) $\varphi(\mathbf{A}) \leq \varphi(\mathbf{B})$ for every separately monotonically increasing bounded continuous function $\varphi \colon \mathbb{R}^{\kappa} \to \mathbb{R}$,
- (iii) $\varphi(\mathbf{A}) \leq \varphi(\mathbf{B})$ for every separately monotonically increasing bounded Borel function $\varphi \colon \mathbb{R}^{\kappa} \to \mathbb{R}$.

イロト イポト イヨト イヨト

Remark

Olson showed that $(B_s(\mathcal{H}), \preccurlyeq)$ is not a vector ordered space. The missing property is that $A \preccurlyeq B$ does not imply $A + C \preccurlyeq B + C$ for every $A, B, C \in B_s(\mathcal{H})$.

Example (Olson)

Let $\mathcal{H} = \mathbb{C}^2$ with orthonormal basis $\{(1,0),(0,1)\}$. Define three selfadjoint operators A,B and C by

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & -\sqrt{2} \\ -\sqrt{2} & 1 \end{bmatrix} \text{ i } C = \begin{bmatrix} -1 & \sqrt{2} \\ \sqrt{2} & -1 \end{bmatrix}.$$

en $A \preccurlyeq B$ and $A + C \preccurlyeq B + C$.

イロト イヨト イヨト イヨト

Remark

Olson showed that $(B_s(\mathcal{H}), \preccurlyeq)$ is not a vector ordered space. The missing property is that $A \preccurlyeq B$ does not imply $A + C \preccurlyeq B + C$ for every $A, B, C \in B_s(\mathcal{H})$.

Example (Olson)

Let $\mathcal{H} = \mathbb{C}^2$ with orthonormal basis $\{(1,0), (0,1)\}$. Define three selfadjoint operators A, B and C by

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & -\sqrt{2} \\ -\sqrt{2} & 1 \end{bmatrix} \ \mathsf{i} \ C = \begin{bmatrix} -1 & \sqrt{2} \\ \sqrt{2} & -1 \end{bmatrix}$$

Then $A \preccurlyeq B$ and $A + C \preccurlyeq B + C$.

(D) (A) (A) (A)

Remark

Nevertheless spectral order has some traces of vector order properties.

Corollary

Let (A_1, A_2) and (B_1, B_2) be a commuting pair of selfadjoint operators in \mathcal{H} . If $A_1 \preccurlyeq B_1$ and $A_2 \preccurlyeq B_2$, then ^a

$$\overline{A_1 + A_2} \preccurlyeq \overline{B_1 + B_2}.$$
(4)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

^aIf A_1 and A_2 are not bounded, then it may happen, that $A_1 + A_2 \subsetneq \overline{A_1 + A_2}$.

Remark

If $A, C \in B_s(\mathcal{H})$, then $AC \in B_s(\mathcal{H})$ if and only if A and C commute.

Corollary

Suppose that A, B, C are selfadjoint operators in \mathcal{H} . Assume also that C is positive and commutes with A and B. Then inequality $A \preccurlyeq B$ implies that

 $\overline{AC} \preccurlyeq \overline{BC}.$

イロン イヨン イヨン イヨン

Remark

If $A, C \in B_s(\mathcal{H})$, then $AC \in B_s(\mathcal{H})$ if and only if A and C commute.

Corollary

Suppose that A, B, C are selfadjoint operators in \mathcal{H} . Assume also that C is positive and commutes with A and B. Then inequality $A \preccurlyeq B$ implies that

 $\overline{AC} \preccurlyeq \overline{BC}.$

• • • • • • • • • • • •

Let

$$\mathbf{A}^{\alpha} = \int_{\mathbb{R}^{\kappa}} x^{\alpha} dE_{\mathbf{A}}(x) = \overline{A_{1}^{\alpha_{1}} \dots A_{\kappa}^{\alpha_{\kappa}}},$$

for $\alpha \in \mathbb{N}^{\kappa}$.

What are the connections between the domains of operators A^α and $B^\alpha,$ if $A\preccurlyeq B?$

イロト イヨト イヨト イヨト

æ

General case Spectral order once more Monomials Monomials and positive operators

Let

$$\mathbf{C}_{\epsilon} := ((C_1)_{\epsilon_1}, \ldots, (C_{\kappa})_{\epsilon_{\kappa}}),$$

for $\mathbf{C} = (C_1, \ldots, C_{\kappa})$ - κ -tuples of commuting selfadjoint operators in \mathcal{H} and $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_{\kappa}) \in \{-, +\}^{\kappa}$, where $C_{\pm} := \int_{\mathbb{R}} x^{\pm} dE_C(x)$.

Theorem

Let $\mathbf{A} = (A_1, \ldots, A_\kappa)$ and $\mathbf{B} = (B_1, \ldots, B_\kappa)$ be a κ -tuples of commuting selfadjoint operators such that $\mathbf{A} \preccurlyeq \mathbf{B}$ and $\alpha \in \mathbb{N}^{\kappa}$. If

$$oldsymbol{A}_{\epsilon}^{lpha}\in oldsymbol{B}(\mathcal{H}), \quad \epsilon\in\{-,+\}^{\kappa}ackslash\{(+,\ldots,+)\},$$

then

$$\mathscr{D}(\boldsymbol{B}^{\alpha})\subset\mathscr{D}(\boldsymbol{A}^{\alpha}).$$

(D) (A) (A) (A)

Condition

$$\mathbf{A}^{\alpha}_{\epsilon} \in \boldsymbol{B}(\mathcal{H}), \quad \epsilon \in \{-,+\}^{\kappa} \setminus \{(+,\ldots,+)\},$$

can't be weakened.

Example

For every $\epsilon
eq (+,\ldots,+)$ we can find A and B such that $\mathbf{A} \preccurlyeq \mathbf{B}$ and

- $\bullet \ \mathbf{A}^{\alpha}_{\delta} \in \boldsymbol{B}(\mathcal{H}) \text{ for every } \delta \in \{-,+\}^{\kappa} \setminus \{\epsilon\} \text{ and } \alpha \in \mathbb{N}^{\kappa}_{*},$
- **2** $\mathscr{D}(\mathsf{B}^{\alpha}) \not\subset \mathscr{D}(\mathsf{A}^{\alpha})$ for every $\alpha \in \mathbb{N}_{*}^{\kappa}$.

イロト イヨト イヨト イヨト

э

Let $\mathbf{A} = (A_1, \dots, A_{\kappa})$ and $\mathbf{B} = (B_1, \dots, B_{\kappa})$ be κ - tuples of commuting positive selfadjoint operators in \mathcal{H} . Define the set

$$\Lambda(\mathbf{A},\mathbf{B}) := \{ \alpha \in [0,\infty)^{\kappa} \colon \mathbf{A}^{\alpha} \leqslant \mathbf{B}^{\alpha} \}.$$

We know that relation $\mathbf{A} \preccurlyeq \mathbf{B}$ implies the equality $\Lambda(\mathbf{A}, \mathbf{B}) = [0, \infty)^{\kappa}$. What should be assumed about $\Lambda(\mathbf{A}, \mathbf{B})$ to have the reverse implication?

Without any additional informations about ${\bf A}$ and ${\bf B}$ we can formulate the following

Proposition

If
$$\mathbf{A} = (A_1, \dots, A_{\kappa})$$
 and $\mathbf{B} = (B_1, \dots, B_{\kappa})$ are κ -tuples of commuting positive selfadjoint operators in \mathcal{H} , then the following conditions are equivalent

(i)
$$\mathbf{A} \preccurlyeq \mathbf{B}$$
,
(ii) for every $j = 1, ..., \kappa$ the set $\Lambda(\mathbf{A}, \mathbf{B}) \cap \{se_j : s \in [0, \infty)\}$,
where $e_j = (0 ..., \underbrace{1}_{j}, ..., 0)$, is unbounded.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Theorem

Let $\mathbf{A} = (A_1, \dots, A_{\kappa})$ and $\mathbf{B} = (B_1, \dots, B_{\kappa})$ be a commuting κ -tuple of positive selfadjoint operators. Assume that $\mathcal{N}(A_j) = \{0\}$ for $j = 1, \dots, \kappa$. Then the following conditions are equivalent:

(i)
$$\sup_{\alpha \in \Lambda(\boldsymbol{A},\boldsymbol{B})} \frac{\alpha_j}{1+|\alpha|-\alpha_j} = \infty, \text{ for all } j = 1, \dots, \kappa$$

(i')
$$\sup_{\alpha \in \Lambda(\boldsymbol{A},\boldsymbol{B})} \frac{\alpha_j}{1+|\alpha|} = 1, \text{ for all } j = 1, \dots, \kappa,$$

(ii) $\boldsymbol{A} \preccurlyeq \boldsymbol{B}.$

イロト イヨト イヨト イヨト

æ

99

- M. Fujii, I. Kasahara, A remark on the spectral order of operators, *Proc. Japan Acad.* 47 (1971) 986–988.
- R. V. Kadison, Order properties of bounded self-adjoint operators, *Proc. Amer. Math. Soc.* 2 (1951), 505-510.
- T. Kato, Spectral order and a matrix limit theorem, *Linear and Multilinear Algebra* 8 (1979/80), 15-19.
- M. P. Olson, The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice, Proc. Amer. Math. Soc. 28 (1971), 537-544.
- A. Płaneta, J. Stochel, Spectral order for unbounded operators, *J. Math. Anal. Appl.*, 10.1016/j.jmaa.2011.12.042.

📔 A. Płaneta, J. Stochel, Multidimensional spectral order.

S. Sherman, Order in operator algebras, Amer. J. Math. 73 (1951), 227-232.

・ロト ・ 同ト ・ ヨト ・ ヨト

æ