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Notation

H� complex Hilbert space,

By an operator in a complex Hilbert space H we understand a
linear mapping A : H ⊇ D(A)→ H de�ned on a linear
subspace D(A) of H, called the domain of A.
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De�nitions

Denote by B(H) the C ∗-algebra of all bounded operators A in
H with D(A) = H. As usual, I = IH stands for the identity
operator on H.

Bs(H) = {A ∈ B(H) : A = A∗}
Given two selfadjoint operators A,B ∈ B(H), we write A 6 B

whenever 〈Ah, h〉 6 〈Bh, h〉 for all h ∈ H.
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De�nitions

A densely de�ned operator A in H is said to be selfadjoint if
A = A∗ and positive if 〈Ah, h〉 > 0 for all h ∈ D(A).

If A and B are positive selfadjoint operators in H such that
D(B1/2) ⊆ D(A1/2) and ‖A1/2h‖ 6 ‖B1/2h‖ for all
h ∈ D(B1/2), then we write A 6 B .

The last de�nition of 6 is easily seen to be consistent with
that for bounded operators.
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Remark

In general inequality 0 6 A 6 B , where A,B ∈ B(H), may not
imply An 6 Bn, where n ∈ N.

Theorem (M. P. Olson, A. P., J. Stochel)

Let A and B be positive selfadjoint operators in H. Then the

following conditions are equivalent:

(i) An 6 Bn for all n ∈ N,
(ii) {n ∈ N : An 6 Bn} is in�nite,

(iii) A 4 B.
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The de�nition of spectral order

Let A,B ∈ Bs(H) with spectral measure EA and EB ,
respectively. we write A 4 B if EB((−∞, x ]) 6 EA((−∞, x ])
for all x ∈ R.

The relation 4 is a partial order in the set of all selfadjoint
operators in H, but it is not a vector order!

This de�nition was introduced in 1971 by Olson.
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Lattices

Kadison (1951): (Bs(H),6) is an anti-lattice, i.e., for any
A,B ∈ Bs(H), the supremum of the set {A,B} exists if and
only if A,B are comparable (either A 6 B or B 6 A).

Sherman (1951): If the set of all selfadjoint elements of a
C ∗-algebra A with the usual order forms a lattice, then A is
commutative.

Olson (1971): If S is the set of all selfadjoint elements of a
von Neumann algebra V in B(H) then, (S,4) is a
conditionally complete lattice.
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Theorem (T. Kato)

If A1, . . . ,Ak ∈ B(H) are positive, then

lim
n→∞

(An
1 + . . .+ An

k)
1

n h =

 k∨
j=1

Aj

 h

for every h ∈ H.
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The de�nition of spectral order for unbounded operators

Given two selfadjoint operators A and B in H with spectral
measure EA and EB , respectively, we write A 4 B if
EB((−∞, x ]) 6 EA((−∞, x ]) for all x ∈ R.

In the case of unbounded operators closed supports of EA and EB
are not compact.
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Proposition

Let A and B be selfadjoint operators in H such that A 4 B. Then

〈Ah, h〉 6 〈Bh, h〉 for all h ∈ D(A) ∩D(B). Moreover, if A and B

are bounded from below, then D(B) ⊆ D(A).

Corollary (Olson)

If A,B ∈ Bs(H), then A 4 B ⇒ A 6 B.

Remark

In general, the relation A 4 B implies neither D(B) ⊆ D(A) nor
D(A) ⊆ D(B). It is even possible to �nd operators A and B such
that A 4 B and D(A) ∩D(B) = {0} 6= H.
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Example

Let A1 be the selfadjoint operator of multiplication by a Borel
function φ : R→ R in L2(R) and let A2 be the selfadjoint
operator of multiplication by the identity function on R in
L2(R).

Consider the continuous function φ:

φ(x) =


−x2 if x ∈ (−∞,−1],

x if x ∈ (−1, 1],
√
x if x ∈ [1,∞).

Note that the spectral measure E2 of A2 is given by
E2(σ)h = χσh for h ∈ L2(R).

In turn, the spectral measure E1 of A1 takes the form
E1(σ) = E2(φ−1(σ)) for Borel subsets σ of R.
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Example

Since φ is strictly increasing and φ(x) 6 x for all x ∈ R, we
see that

E2((−∞, x ]) = E1((−∞, φ(x)]) 6 E1((−∞, x ]), x ∈ R,

which means that A1 4 A2.

De�ne two functions h1, h2 ∈ L2(R) by

h1(x) =

{
0 if x ∈ (−∞, 1],

x−3/2 if x ∈ (1,∞),

h2(x) =

{
|x |−5/2 if x ∈ (−∞,−1],

0 if x ∈ (−1,∞).

Then h1 ∈ D(A1) \D(A2) and h2 ∈ D(A2) \D(A1).
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Theorem (M. P. Olson, M. Fujii, I. Kasahara, A. P., J. Stochel)

If A and B are selfadjoint operators in H, then the following

conditions are equivalent:

(i) A 4 B,

(ii) f (A) 6 f (B) for each bounded continuous monotonically

increasing function f : R→ [0,∞),

(iii) f (A) 6 f (B) for each bounded monotonically increasing

function f : R→ R.
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De�nitions

D∞(A) =
⋂∞

n=1 D(An).

An element of

B(A) =
⋃
a>0

{h ∈ D∞(A) : ∃c>0∀n>0‖Anh‖ 6 can}

is called a bounded vector of A.
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Theorem

If A and B are positive selfadjoint operators in H, then the

following conditions are equivalent:

(i) A 4 B,

(ii) D∞(B) ⊆ D∞(A) and the set IA,B(h) is unbounded for all

h ∈ D∞(B),

(iii) B(B) ⊆ D∞(A) and the set IA,B(h) is unbounded for all

h ∈ B(B),

(iv) B(B) ⊆ B(A) and the set IA,B(h) is unbounded for all

h ∈ B(B),

where IA,B(h) := {s ∈ [0,∞) : 〈Ash, h〉 6 〈Bsh, h〉} for
h ∈ D∞(A) ∩D∞(B).
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Corollary

Let A1 and A2 be positive selfadjoint operators in H. Assume that

{kn}∞n=1 ⊆ N and {rn}∞n=1 ⊆ [1,∞) are sequences such that

limn→∞ kn =∞ and lim infn→∞
kn
√
rn 6 1. Then the following

conditions are equivalent:

(i) A1 4 A2,

(ii) An
1 4 An

2 for all n > 0,

(iii) An
1 6 An

2 for all n > 0,

(iv) Akn
1 6 rnA

kn
2 for all n > 1.
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Let us consider two-dimensional Hilbert space H = C2.Let A and
Bθ be the matrices given by

A =

[
1 1
1 1

]
and Bθ =

[
2 1
1 θ

]
for θ ∈ [1,∞). (1)

Clearly, A > 0 and Bθ > 0.

Proposition

Let A and Bθ be as in (1). Then for every positive integer k there

exists θk ∈ (2,∞) such that for all θ ∈ [θk ,∞),

(i) An 6 Bn
θ for all n = 0, . . . , k,

(ii) A 64 Bθ.
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Recall that due to Stone's theorem the in�nitesimal generator of a
C0-semigroup of bounded selfadjoint operators on H is always
selfadjoint.

Theorem

Let {Tj(t)}t>0 ⊆ B(H) be a C0-semigroup of selfadjoint operators

and Aj be its in�nitesimal generator, j = 1, 2. Then the following

conditions are equivalent:

(i) A1 4 A2,

(ii) T1(t) 4 T2(t) for some t > 0,

(iii) T1(t) 4 T2(t) for every t > 0,

(iv) T1(t) 6 T2(t) for some t > 0 and

EA((−∞, x ])EB((−∞, x ]) = EB((−∞, x ])EA((−∞, x ]) for

every x ∈ R,
(v) T1(nt) 6 T2(nt) for some t > 0 and for in�nitely many n ∈ N.
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Spectral order once more
Monomials
Monomials and positive operators

In the multidimensional case we restrict ours considerations to
κ-tuples of selfadjoint operators, which consists of commuting
operators.

We say that selfadjoint operators A and B in H (spectrally)

commute if their spectral measures commute, i.e.,
EA(σ)EB(τ) = EB(τ)EA(σ) for all Borel subsets σ, τ of R.
EA-joint spectral measure of A = (A1, . . . ,Aκ),
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De�nition

Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be a κ-tuples of
commuting selfadjoint operators in H. We write A 4 B if
EB((−∞, x ]) 6 EA((−∞, x ]) for every x = (x1, . . . , xκ) ∈ Rκ,
where (−∞, x ] := (−∞, x1]× . . .× (−∞, xκ].
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Notation and de�nitions

S(Rκ,E ) - the set of all E - a.e. �nite Borel function
f : Rκ → R, where R = {−∞} ∪ R ∪ {+∞},

|α| := α1 + . . .+ ακ for α = (α1, . . . , ακ) ∈ [0,∞)κ,

xα := xα11 . . . xακ
κ for x = (x1, . . . , xκ) and α = (α1, . . . , ακ).
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De�nitions

Let ι ∈ {1, . . . , κ}. We de�ne a relation 6ι on Rκ requiring
that a 6ι b if aj 6 bj for j = 1, . . . , ι and aj = bj for
j = ι+ 1, . . . , κ. If ι = κ we write 6 instead of 6κ.

Let κ ∈ N∗, Ω ⊂ Rκ and ϕ : Ω→ R. We say, that ϕ is a
separately increasing function if

x 6 y ⇒ ϕ(x) 6 ϕ(y),

for every x , y ∈ Ω.

Let (X ,≤) be a partially ordered set. A set S ⊂ X is called a
lower set in X if

(y ≤ x ∧ x ∈ S)⇒ y ∈ S ,

for every x , y ∈ X .
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Lemma

Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be a commuting

κ-tuple of selfadjoint operators in H and let ι ∈ {1, . . . , κ}.
Assume that Aj = Bj for every j = ι+ 1, . . . , κ. If A 4 B, then

EB(Ω) 6 EA(Ω) (2)

for every Ω ∈ B(Rκ), which is a lower set in (Rκ,6ι).
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Theorem

Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be commuting κ-tuple
of selfadjoint operators in H. Then the following conditions are

equivalent:

(i) A 4 B,

(ii) ϕ(A) 4 ϕ(B) for every separately increasing function

ϕ ∈ S(Rκ,EA) ∩ S(Rκ,EB),

(iii) Aj 4 Bj for every j = 1, . . . , κ.
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Remark

Suppose that dimH > 1. Then each Borel function ϕ : Rκ → R
satisfying condition

A 4 B =⇒ ϕ(A) 4 ϕ(B) (3)

for every A, B κ-tuples of commuting selfadjoint operators, has to
be separately monotonically increasing.

Artur Pªaneta Multidimensional spectral order



Spectral order 4
Multidimensional spectral order

General case
Spectral order once more
Monomials
Monomials and positive operators

Corollary

Let A and B be κ-tuples of commuting selfadjoint operators. Then

the following conditions are equivalent:

(i) A 4 B,

(ii) ϕ(A) 6 ϕ(B) for every separately monotonically increasing

bounded continuous function ϕ : Rκ → R,
(iii) ϕ(A) 6 ϕ(B) for every separately monotonically increasing

bounded Borel function ϕ : Rκ → R.
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Remark

Olson showed that (Bs(H),4) is not a vector ordered space. The
missing property is that A 4 B does not imply A + C 4 B + C for
every A,B,C ∈ Bs(H).

Example (Olson)

Let H = C2 with orthonormal basis {(1, 0), (0, 1)}. De�ne three
selfadjoint operators A,B and C by

A =

[
0 0
0 0

]
, B =

[
2 −

√
2

−
√
2 1

]
i C =

[
−1

√
2√

2 −1

]
.

Then A 4 B and A + C 64 B + C .
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Remark

Nevertheless spectral order has some traces of vector order
properties.

Corollary

Let (A1,A2) and (B1,B2) be a commuting pair of selfadjoint

operators in H. If A1 4 B1 and A2 4 B2, then
a

A1 + A2 4 B1 + B2. (4)

aIf A1 and A2 are not bounded, then it may happen, that

A1 + A2 ( A1 + A2.
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Remark

If A,C ∈ Bs(H), then AC ∈ Bs(H) if and only if A and C

commute.

Corollary

Suppose that A,B,C are selfadjoint operators in H. Assume also

that C is positive and commutes with A and B. Then inequality

A 4 B implies that

AC 4 BC .
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Let

A
α =

∫
Rκ

xαdEA(x) = Aα11 . . .Aακ
κ ,

for α ∈ Nκ.
What are the connections between the domains of operators Aα

and Bα, if A 4 B?
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Let
Cε := ((C1)ε1 , . . . , (Cκ)εκ),

for C = (C1, . . . ,Cκ) - κ-tuples of commuting selfadjoint operators
in H and ε = (ε1, . . . , εκ) ∈ {−,+}κ, where C± :=

∫
R x±dEC (x).

Theorem

Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be a κ-tuples of
commuting selfadjoint operators such that A 4 B and α ∈ Nκ. If

A
α
ε ∈ B(H), ε ∈ {−,+}κ\{(+, . . . ,+)},

then

D(Bα) ⊂ D(Aα).
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Condition

A
α
ε ∈ B(H), ε ∈ {−,+}κ\{(+, . . . ,+)},

can't be weakened.

Example

For every ε 6= (+, . . . ,+) we can �nd A and B such that A 4 B

and

1 A
α
δ ∈ B(H) for every δ ∈ {−,+}κ\{ε} and α ∈ Nκ∗ ,

2 D(Bα) 6⊂ D(Aα) for every α ∈ Nκ∗ .
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Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be κ- tuples of
commuting positive selfadjoint operators in H. De�ne the set

Λ(A,B) := {α ∈ [0,∞)κ : Aα 6 B
α}.

We know that relation A 4 B implies the equality
Λ(A,B) = [0,∞)κ.
What should be assumed about Λ(A,B) to have the reverse
implication?
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Without any additional informations about A and B we can
formulate the following

Proposition

If A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) are κ-tuples of
commuting positive selfadjoint operators in H, then the following

conditions are equivalent

(i) A 4 B,

(ii) for every j = 1, . . . , κ the set Λ(A,B) ∩ {sej : s ∈ [0,∞)},
where ej = (0 . . . , 1︸︷︷︸

j

, . . . , 0), is unbounded.
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Theorem

Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be a commuting

κ-tuple of positive selfadjoint operators. Assume that

N (Aj) = {0} for j = 1, . . . , κ. Then the following conditions are

equivalent:

(i) sup
α∈Λ(A,B)

αj

1 + |α| − αj

=∞, for all j = 1, . . . , κ,

(i') sup
α∈Λ(A,B)

αj

1 + |α|
= 1, for all j = 1, . . . , κ,

(ii) A 4 B.

Artur Pªaneta Multidimensional spectral order



Spectral order 4
Multidimensional spectral order

General case
Spectral order once more
Monomials
Monomials and positive operators

M. Fujii, I. Kasahara, A remark on the spectral order of
operators, Proc. Japan Acad. 47 (1971) 986�988.

R. V. Kadison, Order properties of bounded self-adjoint
operators, Proc. Amer. Math. Soc. 2 (1951), 505-510.

T. Kato, Spectral order and a matrix limit theorem, Linear and
Multilinear Algebra 8 (1979/80), 15-19.

M. P. Olson, The selfadjoint operators of a von Neumann
algebra form a conditionally complete lattice, Proc. Amer.

Math. Soc. 28 (1971), 537-544.

A. Pªaneta, J. Stochel, Spectral order for unbounded operators,
J. Math. Anal. Appl., 10.1016/j.jmaa.2011.12.042.

99

Artur Pªaneta Multidimensional spectral order



Spectral order 4
Multidimensional spectral order

General case
Spectral order once more
Monomials
Monomials and positive operators

A. Pªaneta, J. Stochel, Multidimensional spectral order.

S. Sherman, Order in operator algebras, Amer. J. Math. 73

(1951), 227-232.

Artur Pªaneta Multidimensional spectral order


	Spectral order 
	Introduction
	 and -comparison

	Multidimensional spectral order
	General case
	Spectral order once more
	Monomials
	Monomials and positive operators


