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I Complex Analysis, Pluripotential Theory

e.g. Zakharyuta’s extremal function, Kolmogorov problem on
asymptotics of entropy and widths of classes of analytic
functions, Kolmogorov’ question, Zakharyuta’s conjecture,
pluricomplex Green function with several poles.

I Interplay between Functional Analysis and Complex
Analysis
e.g Scales and common bases, characterization of hyperconvex,

resp. Liouville type manifolds M by submultiplicative invariants
of H(M)

I Functional Analysis
e.g. Invariants and applications, quasi-equivalence, isomorphic

classification of Fréchet spaces, automatic compactness.
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Preliminaries

E nuclear Fréchet space, ‖ · ‖1 ≤ ‖ · ‖2 ≤ . . . fundamental system
of semi-norms.
Basis in E = Schauder basis e : e0, e1 . . . , every x ∈ E has unique
expansion x =

∑
j yj(x)ej , yj ∈ E ′ coordinate functionals.

Φe : x 7→ (y0(x), y1(x), . . . ) ∈ λe ⊂ KN0 linear isomorphism, λe
coordinate space.

Theorem of Dynin-Mityagin: E nuclear Fréchet space, then
λe = {ξ = (ξ0, ξ1, . . . ) : ‖ξ‖k =

∑
j |ξj | ‖ej‖k <∞ for all k ∈ N}

and Φe is a topological isomorphism.

Definition: If 0 ≤ aj,k ≤ aj,k+1 ≤ . . . , supk aj,k > 0 for all j , k
then the Köthe space λ(A) is defined as
λ(A) = {x = (x0, x1, . . . ) : ‖x‖k =

∑
j |xj |aj,k <∞ for all k}.

Criterion: (Grothendieck-Pietsch)
λ(A) nuclear ⇔ ∀k∃p :

∑
j aj,k/aj,k+p ≤ ∞
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then the Köthe space λ(A) is defined as
λ(A) = {x = (x0, x1, . . . ) : ‖x‖k =

∑
j |xj |aj,k <∞ for all k}.

Criterion: (Grothendieck-Pietsch)
λ(A) nuclear ⇔ ∀k∃p :

∑
j aj,k/aj,k+p ≤ ∞



Preliminaries
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Classical Problems

I Isomorphic classification.
I By topological linear invariants.

I Separating spaces.
I Giving a complete identification, at least among spaces of a

subclass.
I By properties of L(E ,F ), making isomorphisms impossible.

I Existence of a basis.
I Yes or no?
I If yes determine the coordinate space.

I Quasi-equivalence.
I General problem (unsolved!!!)
I Under certain assumptions.
I Quasi-diagonal classification by topological linear invariants.
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(Quasi-)equivalence

Fundamental problem: E nuclear Fréchet space, (ej)j , (fj)j
bases, λe , λf coordinate spaces.
Question: λe = λf ?
Answer: Cannot be expected, may multiply basis vectors with
nonzero numbers, reorder basis.
Comment: If it is only this, it is the ‘same space’ anyhow, it is
analogue to ‘congruent triangles’.

Definition: Two Köthe spaces λ(A), λ(B) are quasi-equivalent
(λ(A)

qd
' λ(B)) if there is a permutation π of N0 and a positive

sequence tj such that λ(A) = λ(B̃) where B̃ = (tjbπ(j),k)j,k .

Notation: Two bases are quasi-equivalent if their coordinate
spaces are quasi-equivalent. E has the quasi-equivalence
property if all bases are quasi-equivalent.
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Definition: Two Köthe spaces λ(A), λ(B) are quasi-equivalent
(λ(A)

qd
' λ(B)) if there is a permutation π of N0 and a positive

sequence tj such that λ(A) = λ(B̃) where B̃ = (tjbπ(j),k)j,k .

Notation: Two bases are quasi-equivalent if their coordinate
spaces are quasi-equivalent. E has the quasi-equivalence
property if all bases are quasi-equivalent.



(Quasi-)equivalence

Fundamental problem: E nuclear Fréchet space, (ej)j , (fj)j
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The quasi-equivalence problem

Fundamental problem: Do all nuclear Fréchet spaces have the
quasi-equivalence property?
Equivalent: Are any two isomorphic nuclear Köthe spaces
quasi-equivalent?

Problem is unsolved, however solutions have been given fo
many special classes of space.

Regular case:

Definition: λ(A) is called regular if aj,k
aj,k+1

is decreasing.

Theorem (Crone-Robinson): If λ(A) ∼= λ(B) and one of them
is regular then they are quasi-equivalent.

Important class of regular spaces: power series spaces.



The quasi-equivalence problem

Fundamental problem: Do all nuclear Fréchet spaces have the
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Power series spaces
Definition: Let 0 ≤ α0 ≤ α1 ≤↗∞, r ∈ {0,∞} then
Λr (α) := {x = (xj)j : ‖x‖t =

∑
j |xj |t etαj <∞ for all t < r}

is called power series space, if r =∞ of infinite type, if r = 0 of
finite type.

Remark: Power series spaces are regular hence have the
quasi-equivalence property. This is also a special case of an
earlier Theorem of Dragilev, quoted later.

Examples: Λ0(j1/n) = H(Dn), Λ∞(j1/n) = H(Cn).

Early result by Dragilev 1965:
H(D) has the quasi-equivalence property.

Theorem (Mityagin): Λr (α) ∼= Λs(β)⇔ Λr (α) = Λs(β)

Remark: This and Bessaga’s Theorem also show
quasi-equivalence.
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Examples: Λ0(j1/n) = H(Dn), Λ∞(j1/n) = H(Cn).

Early result by Dragilev 1965:
H(D) has the quasi-equivalence property.

Theorem (Mityagin): Λr (α) ∼= Λs(β)⇔ Λr (α) = Λs(β)

Remark: This and Bessaga’s Theorem also show
quasi-equivalence.



Non-regular case

Consider E = Λ∞(α)× Λ0(β). E is not regular.
Reason: Regularity ⇒ e−αn ≥ e−εβm ≥ e−αn+1

⇔ αn ≤ εβm ≤ αn+1 for all ε > 0.

Zakharyuta’s Result: For reasonable α, β it has the
quasi-equivalence property and we get an isomorphic
classification among these spaces. Let us follow his arguments.

Definition (Dragilev): A Köthe space λ(A) belongs to class:
(d1) if ∃p ∀q ∃r ,C > 0∀j : a2

j,q ≤ C aj,paj,r .

(d2) if ∀p ∃q ∀r ∃C > 0 ∀j : C a2
j,q ≥ aj,paj,r .

Examples: Λ∞(α) ∈ (d1), Λ0(α) ∈ (d2).

Theorem (Dragilev): If λ(A) is regular, nuclear and in class
(d1) or (d2) then it has the quasi-equivalence property.
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Automatic compactness of maps

Theorem (Zakharyuta): If λ(A) ∈ (d2), λ(B) ∈ (d1) and λ(B)
Montel then L(λ(A), λ(B)) = K (λ(A), λ(B)).

Corollary: If X is a quotient of λ(A) ∈ (d2) and Y a subspace of
λ(B) ∈ (d1), λ(B) Montel, then L(X ,Y ) = K (X ,Y ).

Corollary: If in this case X or Y is infinite dimensional then
X 6∼= Y .

Recall: X ,Y Fréchet , T ∈ L(X ,Y ) is called Fredholm if
N(T ) and Y /R(T ) are finite dimensional. ind T = dim N(T ) -
codim R(T ). T is Fredholm iff it is invertible mod compacts.

Lemma (Douady): Let T : X1 × X2 → Y1 × Y2 be an
isomorphism given by the matrix

[
T11
T21

T12
T22

]
with inverse

S =
[

S11
S21

S12
S22

]
. If T21 and S21 are compact, then T11 and T22 are

Fredholm.
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Isomorphisms of Cartesian products

Recall: A space E is called shift-stable if K× E ∼= E .

Corollary: If in Douady’s Lemma all spaces are shift-stable then
X1 ∼= Y1 and X2 ∼= Y2.

Notation: (E ,F ) ∈ R iff L(E ,F ) = K (E ,F ).

Theorem (Zakharyuta): If T : X1 × X2 → Y1 × Y2 is a
isomorphism, where all spaces are shift-stable Montel spaces
and (X1,Y2) ∈ R, (Y1,X2) ∈ R then X1 ∼= Y1, X2 ∼= Y2.

Theorem (Zakharyuta): For spaces of type Λ0(α)× Λ∞(β),
where (αj/αj+1) and (βj/βj+1) are bounded, the isomorphy
class of E determines the isomorphy class of the factors.

Example: The isomorphy class of H(Dn)× H(Cm) determines
n and m.

Theorem (Zakharyuta): Spaces Λ0(α)× Λ∞(β), as above, have
the quasi-equivalence property.
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Diametral dimension

Some notation: U,V ⊂ X absolutely convex zero
neighborhoods. Kolmogorov diameters:

dn(V ,U) := inf
dim L≤n

inf{δ > 0 : V ⊂ δU + L}.

Diametral dimension of X :

Γ(X ) = {γ = (γn) : ∀U ∃V : γndn(V ,U)→ 0}
Γ′(X ) = {γ = (γn) : ∃U ∀V : γn/dn(V ,U)→ 0}

Examples: Γ(Λ∞(α)) = Λ∞(α)′, Γ(Λ0(α)) = Λ0(α);
Γ′(Λ∞(α)) = Λ∞(α), Γ′(Λ0(α)) = Λ0(α)′.

Theorem: 1. Both invariants distinguish power series spaces.
2. Γ′(X ) distinguishes regular spaces.
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Explanation of problem

Remark: If λ(A) is regular then dn(Uq,Up) = an,p
an,q

. If not then
comes in a permutation depending on p and q.

Consequence:
I In the regular case Γ′(λ(A)) is the union of countably many

diagonal transforms of λ(A).
I In the general case Γ′(λ(A)) is the union of countably many

”twisted versions” of λ(A).

Grothendieck’s factorization Theorem: In both cases, if
Γ′(λ(A)) = Γ′(λ(B)), the spaces coming from Γ′(λ(A)) and from
Γ(λ(B))′ are nested in each other.

I Regular case ⇒ Crone-Robinson.
I General case: what information remains?
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Counting invariants

Principle: decreasing rearrangements of sequences ≈ counting
functions.

Inverse diametral dimension for X = λ(A):

γ(X ) = {ϕ : ∃p ∀q ∃c |ϕ(t)| . |{j : aj,q/aj,p ≤ c et}|}.

For Köthe spaces X ,Y : Γ′(X ) = Γ′(Y )⇔ γ(X ) = γ(Y ).

Counting function: mα(t) = {j : αj ≤ t}.

Examples: ϕ denotes real valued function on R+.

γ(Λ0(α)) = {ϕ : ∃A |ϕ(t)| . mα(At)}
γ(Λ∞(α)) = {ϕ : ∀ε |ϕ(t)| . mα(εt)}

γ(Λ0(α)× Λ∞(β)) = {ϕ : ∃A∀ε |ϕ(t)| . mα(At) + mβ(εt)}
γ(Λ0(α)⊗ Λ∞(β)) = {ϕ : ∃A∀ε |ϕ(t)| . mα(At) ·mβ(εt)}
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Tensor products

Consider E = Λ0(α)⊗ Λ∞(β). E is not regular.
Reason: Regularity ⇒ e−εαn−βm ≥ e−εαν−βµ
⇔ εαν + βµ ≥ εαn + βm for all ε > 0⇒ βµ ≥ βm.

Example: αj = j1/n, βj = j1/m then mα(t) ∼ tn, mβ(t) ∼ tm

⇒ γ(Λ0(α)⊗ Λ∞(β)) = {ϕ : |ϕ(t)| = o(tn+m)}.

Consequence:
Λ0(j1/n)⊗ Λ∞(j1/m) ∼= Λ0(j1/ν)⊗ Λ∞(j1/µ)⇒ n + m = ν + µ.

Theorem (Djakov - Zakharyuta):
H(Dn × Cm) ∼= H(Dν × Cµ)⇔ n + m = ν + µ.

Theorem (Zakharyuta): If X = Λ0(α)⊗ Λ∞(β),
Y = Λ0(α′)⊗ Λ∞(β′) and all spaces are stable, i.e. αj/α2j etc.
bounded, then:

X ∼= Y ⇔ γ(X ) = γ(Y ).
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First type power spaces

Definition: E is the class of all Köthe spaces E (λ, a) = λ(A)
where A has the form

aj,p = e(− 1
p +λj p)aj

where aj > 0 and 0 < λj ≤ 1 for all j .
They are called first type power spaces.
One distinguishes the cases:

1. λj → 0 (finite type; E1)
2. limλj > 0 (infinite type; E2)
3. limλj = 0, limλj > 0 (mixed type; E3)

Examples: 1. Λ0(α)⊗ Λ∞(β) ∈ E3

2. T Λ0 = E (λ, a) with an,ν = nν1/n, λn,ν = ν−1/n, T Λ0 ∈ E3,
T Λ0 ∼= T (H(Dd )) for all dimensions d .
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where A has the form

aj,p = e(− 1
p +λj p)aj

where aj > 0 and 0 < λj ≤ 1 for all j .
They are called first type power spaces.

One distinguishes the cases:
1. λj → 0 (finite type; E1)
2. limλj > 0 (infinite type; E2)
3. limλj = 0, limλj > 0 (mixed type; E3)

Examples: 1. Λ0(α)⊗ Λ∞(β) ∈ E3

2. T Λ0 = E (λ, a) with an,ν = nν1/n, λn,ν = ν−1/n, T Λ0 ∈ E3,
T Λ0 ∼= T (H(Dd )) for all dimensions d .



First type power spaces

Definition: E is the class of all Köthe spaces E (λ, a) = λ(A)
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Two-sided counting functions

Up to now all descriptions in terms of one-sided counting function.
To study the isomorphy, resp. quasi-equivalence structure of E
more sophisticated invariants are needed.

Lemma: If E (λ, a) ∼= E (µ, b), then ∀ B ∃ A ∀ δ ∃ ε:
(a) |{j : µj > δ, t/B < bj ≤ Bt}| ≤ |{j : λj > ε, t/A < aj ≤

At}|
(b) |{j : µj < ε, t/B < bj ≤ Bt}| ≤ |{j : λj < δ, t/A < aj ≤

At}|
(c) ∀ ε′ ∃ δ′ :
|{j : ε′ < µj ≤ ε, t/B < bj ≤ Bt}| ≤ |{j : δ′ < λj ≤
δ, t/A < aj ≤ At}|

and the same relations hold with spaces interchanged.

Theorem: If X = E (λ, a), Y = E (µ, b) and X
p
' X 2 then:

X ∼= Y ⇔ X
p
' Y .



Two-sided counting functions

Up to now all descriptions in terms of one-sided counting function.
To study the isomorphy, resp. quasi-equivalence structure of E
more sophisticated invariants are needed.

Lemma: If E (λ, a) ∼= E (µ, b), then ∀ B ∃ A ∀ δ ∃ ε:
(a) |{j : µj > δ, t/B < bj ≤ Bt}| ≤ |{j : λj > ε, t/A < aj ≤

At}|
(b) |{j : µj < ε, t/B < bj ≤ Bt}| ≤ |{j : λj < δ, t/A < aj ≤

At}|
(c) ∀ ε′ ∃ δ′ :
|{j : ε′ < µj ≤ ε, t/B < bj ≤ Bt}| ≤ |{j : δ′ < λj ≤
δ, t/A < aj ≤ At}|

and the same relations hold with spaces interchanged.

Theorem: If X = E (λ, a), Y = E (µ, b) and X
p
' X 2 then:

X ∼= Y ⇔ X
p
' Y .



Two-sided counting functions

Up to now all descriptions in terms of one-sided counting function.
To study the isomorphy, resp. quasi-equivalence structure of E
more sophisticated invariants are needed.

Lemma: If E (λ, a) ∼= E (µ, b), then ∀ B ∃ A ∀ δ ∃ ε:
(a) |{j : µj > δ, t/B < bj ≤ Bt}| ≤ |{j : λj > ε, t/A < aj ≤

At}|
(b) |{j : µj < ε, t/B < bj ≤ Bt}| ≤ |{j : λj < δ, t/A < aj ≤

At}|
(c) ∀ ε′ ∃ δ′ :
|{j : ε′ < µj ≤ ε, t/B < bj ≤ Bt}| ≤ |{j : δ′ < λj ≤
δ, t/A < aj ≤ At}|

and the same relations hold with spaces interchanged.

Theorem: If X = E (λ, a), Y = E (µ, b) and X
p
' X 2 then:

X ∼= Y ⇔ X
p
' Y .



Two-sided counting functions

Up to now all descriptions in terms of one-sided counting function.
To study the isomorphy, resp. quasi-equivalence structure of E
more sophisticated invariants are needed.

Lemma: If E (λ, a) ∼= E (µ, b), then ∀ B ∃ A ∀ δ ∃ ε:
(a) |{j : µj > δ, t/B < bj ≤ Bt}| ≤ |{j : λj > ε, t/A < aj ≤

At}|
(b) |{j : µj < ε, t/B < bj ≤ Bt}| ≤ |{j : λj < δ, t/A < aj ≤

At}|
(c) ∀ ε′ ∃ δ′ :
|{j : ε′ < µj ≤ ε, t/B < bj ≤ Bt}| ≤ |{j : δ′ < λj ≤
δ, t/A < aj ≤ At}|

and the same relations hold with spaces interchanged.

Theorem: If X = E (λ, a), Y = E (µ, b) and X
p
' X 2 then:

X ∼= Y ⇔ X
p
' Y .



Quasi-equivalence

Theorem (Dragilev-Bessaga): X nuclear Fréchet spaces, e, f
bases. Then there is a sequence jk →∞ of indices and a
sequence γk > 0 such that λ(‖ek‖p) = λ(γk‖fjk‖p).

Together with the previous this yields:

Theorem: If X = E (λ, a) is nuclear and X ∼= X 2 then X has the
quasi-equivalence property.

In particular we get for tensor-products:

Corollary: If X = Λ0(α)⊗ Λ∞(β) is nuclear and Λ0(α) or Λ∞(β)
is stable then X has the quasi-equivalence property.

Example: H(Dn × Rm) has the quasi-equivalence property for
all n, m.
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Back to tensor products

Theorem: X = Λ0(jα)⊗ Λ∞(jβ), Y = Λ0(jα′)⊗ Λ∞(jβ′). Tfae:
1. X ∼= Y .
2. X

qd
' Y .

3. γ(X ) = γ(Y ).
4. 1/α + 1/β = 1/α′ + 1/β′.

Theorem: (Chalov-Zakharyuta): X = Λ0(eαj)⊗ Λ∞(eβj),
Y = Λ0(eα′j)⊗ Λ∞(eβ′j). Tfae: 1., 2., 3. and

4. αβ = α′β′.

Theorem: (Zakharyuta): Y = Λ0(ejα)⊗ Λ∞(ejβ ),
Y = Λ0(ejα′

)⊗ Λ∞(ejβ′
). Then:

1. X ∼= Y ⇔ X = Y
2. ”Lemma” ⇔ γ(X ) = γ(Y )⇔ 1/α + 1/β = 1/α′ + 1/β′.
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Multirectangular invariants

Consider X = E (λ, a) with aj > 1, 0 < λj ≤ 1 for all j and likewise
Y = E (µ, b).
Definition: For m ∈ N the m-regular characteristic of
X = E (λ, a) is given by

µX
m(δ, ε; τ, t) :=

∣∣∣∣∣
m⋃

k=1
{j : δk < λj ≤ εk , τk < aj ≤ tk}

∣∣∣∣∣ ,
where δ, ε, τ, t are sequences, admitting the inequalities.
Definition: (µX

m) ≈ (µY
m) if there is a bijection ϕ : [0, 2]→ [0, 1]

and a constant ∆ such that

µX
m(δ, ε; τ, t) ≤ µY

m(ϕ(δ), ϕ−1(ε); τ/∆,∆t)

for all parameters and symmetric condition.
Theorem (Chalov-Zakharyuta): X

qd
' Y ⇔ (µX

m) ≈ (µY
m) .
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Die Schwierigkeiten wachsen, je
näher man dem Ziele kommt.

J.W. Goethe

The difficulties grow, the closer you come to your task.
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näher man dem Ziele kommt.

J.W. Goethe

The difficulties grow, the closer you come to your task.



Summary

First paper quoted: Studia Math. 1973, submitted 1971

Last paper quoted: Studia Math. 2011, submitted 2011

This means: story told in this lecture went over 4o years!

Results not touched in this lecture:
I Second type power spaces:

aj,p = exp(− 1
p + min(λjp))aj , 1 ≤ λj .

I Tensor products of (F)- and (DF)-spaces.
I Gradually relaxing the assumptions (non-nuclear,

non-Schwartz).
I Classification of function spaces in Real and Complex

Analysis.
I Spectral theory in locally convex spaces.
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Good luck Slava
have a happy time
in your new home!!


