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Abstract. We prove that if a non-zero weakly compact-friendly operator B on a
Banach lattice with topologically full center is locally quasi-nilpotent, then the super
right-commutant [B〉 of B has a non-trivial closed invariant ideal. An example of a
weakly compact-friendly operator which is not compact-friendly is also provided.

1. introduction

Weakly compact-friendly operators have been defined in [3] as a natural extension of

compact-friendly operators. Therein, it was shown [3, Theorem 2.3], among others,

that a locally quasi-nilpotent weakly compact-friendly operator on a Banach lattice

has a non-trivial closed invariant ideal. The purpose of this note is to extend some

results in [1] and [4] in the setting of weakly compact-friendly operators on Banach

lattices with topologically full center. In doing so, we also provide an example of a

weakly compact-friendly operator which is not compact-friendly.

Throughout the paper E denotes an infinite-dimensional Banach lattice. As usual,

L(E) and L(E)+ stand, respectively, for the algebra of all bounded linear operators

and the collection of all positive operators on E. For a positive operator B on a Banach

lattice E, the super right-commutant [B〉 of B is defined by

[B〉 := {A ∈ L(E)+ | AB −BA ≥ 0}.

A subspace V of a Banach space X is called non-trivial if {0} 6= V 6= X. If V

is a subspace of a Banach lattice and if v ∈ V and |u| ≤ |v| imply u ∈ V , then V is

called an ideal. A subspace V of a Banach space X for which TV ⊆ V for a bounded

operator T on X is called an invariant subspace for T or a T -invariant subspace.

An operator T on E is said to be dominated by a positive operator B on E,

denoted by T ≺ B, provided |Tx| ≤ B|x| for each x ∈ E. An operator on E which is

dominated by a multiple of the identity operator is called a central operator. The
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collection of all central operators on E is denoted by Z(E) and is referred to as the

center of the Banach lattice E. A positive operator B : E → F between two Banach

lattices is said to be a lattice homomorphism if B(x∨y) = Bx∨By for all x, y ∈ E.

Every positive central operator is a lattice homomorphism. A positive operator B on

E is said to be compact-friendly [1] if there exist three non-zero operators R,K,

and C on E with R,K positive and K compact such that R and B commute, and C

is dominated by both R and K. It is worth mentioning that the notion of compact-

friendliness is of substance only on infinite-dimensional Banach lattices, since every

positive operator on a finite-dimensional Banach lattice is compact. Also, if B is

compact, letting R = K = C = B in the definition, it is seen that compact operators

are compact-friendly, but the converse is not true as the identity operator on an infinite-

dimensional space shows. Furthermore, it is straightforward to observe that any power

(even every polynomial with non-negative coefficients) of a compact-friendly operator

is also compact-friendly. A fairly complete treatment of compact-friendly operators

is given in [1]. Lastly, an operator from a Banach lattice to a Banach space is AM-

compact if it takes order intervals into relatively compact sets. Clearly, each compact

operator is necessarily AM -compact.

For all unexplained notation and terminology, we refer to [1, 2].

Definition 1.1. A positive operator B ∈ L(E) is called weakly compact-friendly

if there exist three non-zero opeators R,K, and C on E with R,K positive and K

compact such that R ∈ [B〉, and C is dominated by both R and K.

Let us start by recalling some more terminology. A continuous function ϕ : Ω→ R,

where Ω is a topological space, has a flat if there exists a non-empty open set Ω0 in

Ω such that ϕ is constant on Ω0. If Ω is a compact Hausdorff space and ϕ : Ω →
R is a continuous function, then Mϕ : C(Ω) → C(Ω) denotes the multiplication

operator generated by ϕ, i.e., for each function f ∈ C(Ω) and each ω ∈ Ω we have

(Mϕf)(ω) := ϕ(ω)f(ω), or briefly Mϕf = ϕf . The function ϕ is called the multiplier.

It is straightforward to check that a multiplication operator Mϕ is positive if and only

if the multiplier ϕ is positive.

The following result, which is Theorem 10.65 in [1], characterizes compact-friendly

multiplication operators on C(Ω)-spaces.

Theorem 1.2. A positive multiplication operator Mϕ on a C(Ω)-space, where Ω is a

compact Hausdorff space, is compact-friendly if and only if the multiplier ϕ has a flat.
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Unlike Theorem 1.2, the multiplier of a positive multiplication operator having a flat

is not necessary for the multiplication operator to be weakly compact-friendly. This

fact, which is the subject matter of the following example, also shows that there are

weakly compact-friendly operators that are not compact-friendly.

Example 1.3. Consider the space E of all continuous functions f : [0, 1/2] → R
equipped with the usual uniform norm. The multiplication operator Mϕ : E → E with

the multiplier ϕ defined by ϕ(ω) := 1− 2ω for all ω ∈ [0, 1/2] is not compact-friendly

by Theorem 1.2, since ϕ has no flats. To see that Mϕ is weakly compact-friendly,

choose R = C = K as the required three operators for the weak compact-friendliness

of Mϕ, where K is the rank-one (and hence, compact) operator on E defined by

(Kf)(ω) := (1− 2ω)f(0) for all f ∈ E and ω ∈ [0, 1/2].

2. invariant subspaces of weakly compact-friendly operators

We start this section, in which the main results of the present note are provided, with

the notion of topological fullness of the center of a Banach lattice.

Definition 2.1. The center Z(E) of a Banach lattice E is called topologically full

if whenever x, y ∈ E with 0 ≤ x ≤ y one can find a sequence (Tn)n∈N in Z(E) such

that ‖Tny − x‖ → 0.

Banach lattices with topologically full center were initiated in [5]. Spaces of this kind

are quite large and contain, for instance, Banach lattices with quasi-interior points and

Dedekind σ-complete Banach lattices (see [5, 6] for details).

Before proceeding, let us first observe that [6] if 0 ≤ x ≤ y and Tny → x, then one

has (T+
n ∧ I)y = (Tny)+ ∧ y → x ∧ y = x, so we may assume that 0 ≤ Tn ≤ I for all

n ∈ N. Set Z(E)1+ := {T ∈ Z(E) | 0 ≤ T ≤ I}.
It is shown in [4, Theorem 3.10] that for a locally quasi-nilpotent positive operator

B on a Banach lattice E with a quasi-interior point for which [B〉 contains an oper-

ator which dominates a non-zero AM -compact operator, [B〉 has an invariant closed

ideal. The following result extends this to positive operators on a Banach lattice with

topologically full center, following similar lines of thought.

Theorem 2.2. Suppose that B is a positive operator on a Banach lattice E with

topologically full center such that

(i) B is locally quasi-nilpotent at some x0 > 0, and

(ii) there is S ∈ [B〉 such that S dominates a non-zero AM-compact operator K.
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Then [B〉 has an invariant closed ideal.

Proof. Since the null ideal NB of B is [B〉-invariant, we may assume that NB = {0}.
Let z ∈ E such that Kz 6= 0. This means that at least one of the vectors (Kz)+

and (Kz)− is non-zero. Suppose (Kz)+ 6= 0. Then, by topological fullness of Z(E),

there exists an operator M ∈ Z(E)1+ such that M |Kz| 6= 0. Indeed, otherwise for

all M ∈ Z(E)1+ we would have M |Kz| = 0. But then, for the sequence (Tn)n∈N in

Z(E)1+ with Tn(|Kz|) → (Kz)+ in norm, we would have (Kz)+ = 0, which is a

contradiction. Suppose now that there exists M ∈ Z(E)1+ such that M |Kz| 6= 0.

From M((Kz)+) + M((Kz)−) 6= 0 it follows that M((Kz)+) 6= 0 or M((Kz)−) 6= 0.

Suppose that M((Kz)+) 6= 0. But since M is a lattice homomorphism, we have

(MKz)+ 6= 0, and so it follows from M((Kz)+)∧M((Kz)−) = (MKz)+∧(MKz)− = 0

that (MKz)− = 0 and MKz > 0. Put K1 := MK. It follows from NB = {0} that

BK1z 6= 0, hence BK1 6= 0. It is also clear that BK1 is AM -compact and is dominated

by BS.

Let J be the semigroup ideal in [B〉 generated by BS, that is,

J = {A1BSA2 | A1, A2 ∈ [B〉}.

It can be verified directly that J is finitely quasi-nilpotent at x0. Since BS ∈ J and

BS dominates a non-zero AM -compact operator, J has an invariant closed ideal by

[1, Theorem 10.44]. Now [1, Theorem 10.49] yields that [B〉 has an invariant closed

ideal. �

The next result is a generalization of [1, Theorem 10.57] which states that if a non-

zero compact-friendly operator B on a Dedekind-complete Banach lattice E is locally

quasi-nilpotent, then there exists a non-trivial closed ideal that is invariant under [B〉.
We show that Dedekind completeness and compact-friendliness are not needed and that

E having topologically full center and B being weakly compact-friendly are sufficient.

The proof is a modification of the proof of Theorem 10.57 in [1] and uses Theorem 2.2.

Theorem 2.3. Let E be a Banach lattice with topologically full center. If B is a locally

quasi-nilpotent weakly compact-friendly operator on E, then [B〉 has a non-trivial closed

invariant ideal.

Proof. For each x > 0, denote by Jx the ideal generated by the orbit [B〉x; that is

Jx := {y ∈ E | |y| ≤ Ax for some A ∈ [B〉}.
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Since the identity operator belongs to [B〉, we have that x ∈ Jx, so this is a non-zero

ideal. Note that Jx is [B〉-invariant: because, if y ∈ Jx, then |y| ≤ Ax for some A ∈ [B〉
and hence for any A1 ∈ [B〉 we have

|A1y| ≤ A1|y| ≤ A1Ax,

yielding that A1y ∈ Jx since the operator A1A belongs to [B〉 which is a multiplicative

semigroup. Therefore, in case where there exists a positive x ∈ E such that the ideal

Jx is not norm-dense in E, the proof is complete. So, suppose that Jx = E for each

x > 0.

Fix three non-zero operators with R,K positive, K compact, and satifying

BR ≤ RB, |Cx| ≤ C|x|, and |Cx| ≤ K|x| for each x ∈ E.

Since C 6= 0 there exists some x1 > 0 such that Cx1 6= 0. This means that at

least one of the vectors (Cx1)
+ and (Cx1)

− is non-zero. Suppose (Cx1)
+ 6= 0. Then,

by topological fullness of Z(E), there exists an operator M1 ∈ Z(E)1+ such that

M1|Cx1| 6= 0. Indeed, otherwise for all M1 ∈ Z(E)1+ we would have M1|Cx1| = 0.

But then, for the sequence (Tn)n∈N in Z(E)1+ with Tn(|Cx1|) → (Cx1)
+ in norm,

we would have (Cx1)
+ = 0, which is a contradiction. Suppose now that there exists

M1 ∈ Z(E)1+ such that M1|Cx1| 6= 0. From M1((Cx1)
+) +M1((Cx1)

−) 6= 0 it follows

that M1((Cx1)
+) 6= 0 or M1((Cx1)

−) 6= 0. Suppose that M1((Cx1)
+) 6= 0. But

since M1 is a lattice homomorphism, we have (M1Cx1)
+ 6= 0, and so it follows from

M1((Cx1)
+) ∧ M1((Cx1)

−) = (M1Cx1)
+ ∧ (M1Cx1)

− = 0 that (M1Cx1)
− = 0 and

M1Cx1 > 0. Let x2 := M1Cx1 > 0 and π1 := M1C. Note that π1 is dominated by R

and K.

Now we have Jx2 = E, and since C 6= 0 there exists some y ∈ Jx2 and an operator

A1 ∈ [B〉 such that 0 < y ≤ A1x2 and Cy 6= 0. We claim that there exists M ∈ Z(E)1+

such that CMA1x2 6= 0. Otherwise, if CMA1x2 = 0 for all M ∈ Z(E)1+, we would

have CTnA1x2 for each n ∈ N for the sequence (Tn)n∈N for which TnA1x2 → y. This

would yield CTnA1x2 → Cy and Cy = 0, which is a contradiction. Since CMA1x2 6= 0,

one has |CMA1x2| 6= 0. Suppose (CMA1x2)
+ 6= 0. By topological fullness of Z(E),

there exists a sequence (Tn)n∈N in Z(E)1+ such that Tn(|CMA1x2|) → (CMA1x2)
+.

Since (CMA1x2)
+ 6= 0, not all Tn(|CMA1x2|) are zero, and we can choose M2 ∈

Z(E)1+ with M2|CMA1x2| 6= 0. Notice that M2((CMA1x2)
+) ∧M2((CMA1x2)

−) =

0. Since M2((CMA1x2)
+) 6= 0, we have M2((CMA1x2)

−) = (M2CMA1x2)
− = 0,

which yields M2CMA1x2 > 0. Put x3 := M2CMA1x2 > 0 and π2 := M2CMA1 and
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observe that π2 is dominated by RA1 and KA1. Repeating once more the preceding

argument with x2 replaced by x3, we then obtain an operator A2 ∈ [B〉 and an operator

π3 : E → E such that π3x3 > 0 and π3 is dominated by RA2 and KA2. From

π3π2π1x1 = π3x3 > 0, we see that π3π2π1 6= 0.

Set S := RA2RA1R ≥ 0. Since |π3π2π1x| ≤ S|x| for each x ∈ E, it follows that

S 6= 0. Moreover, since each πi (i = 1, 2, 3) is dominated by a compact operator, we

have by [2, Theorem 5.14] that π3π2π1 is compact. Moreover, because R, A1, and

A2 belong to [B〉, so does S. Thus, [B〉 contains a non-zero positive operator which

dominates a compact operator. Now, invoke Theorem 2.2 to complete the proof. �
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