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ABSTRACT. We prove that if a non-zero weakly compact-friendly operator B on a
Banach lattice with topologically full center is locally quasi-nilpotent, then the super
right-commutant [B) of B has a non-trivial closed invariant ideal. An example of a
weakly compact-friendly operator which is not compact-friendly is also provided.

1. INTRODUCTION

Weakly compact-friendly operators have been defined in [3] as a natural extension of
compact-friendly operators. Therein, it was shown [3, Theorem 2.3], among others,
that a locally quasi-nilpotent weakly compact-friendly operator on a Banach lattice
has a non-trivial closed invariant ideal. The purpose of this note is to extend some
results in [1] and [4] in the setting of weakly compact-friendly operators on Banach
lattices with topologically full center. In doing so, we also provide an example of a
weakly compact-friendly operator which is not compact-friendly.

Throughout the paper F denotes an infinite-dimensional Banach lattice. As usual,
L(E) and L(E)* stand, respectively, for the algebra of all bounded linear operators
and the collection of all positive operators on E. For a positive operator B on a Banach

lattice E, the super right-commutant [B) of B is defined by
[B) :={A e L(E)" | AB— BA > 0}.

A subspace V' of a Banach space X is called non-trivial if {0} #V # X. If V
is a subspace of a Banach lattice and if v € V and |u| < |v| imply v € V, then V is
called an ideal. A subspace V of a Banach space X for which TV C V for a bounded
operator 1" on X is called an tnvariant subspace for T or a T'-invariant subspace.

An operator T on FE is said to be dominated by a positive operator B on F,
denoted by T' < B, provided |Tz| < B|x| for each z € E. An operator on E which is
dominated by a multiple of the identity operator is called a central operator. The
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collection of all central operators on E is denoted by Z(FE) and is referred to as the
center of the Banach lattice E. A positive operator B : E — F between two Banach
lattices is said to be a lattice homomorphism if B(xVy) = BxV By for all z,y € E.
Every positive central operator is a lattice homomorphism. A positive operator B on
E is said to be compact-friendly [1] if there exist three non-zero operators R, K,
and C on E with R, K positive and K compact such that R and B commute, and C'
is dominated by both R and K. It is worth mentioning that the notion of compact-
friendliness is of substance only on infinite-dimensional Banach lattices, since every
positive operator on a finite-dimensional Banach lattice is compact. Also, if B is
compact, letting R = K = (' = B in the definition, it is seen that compact operators
are compact-friendly, but the converse is not true as the identity operator on an infinite-
dimensional space shows. Furthermore, it is straightforward to observe that any power
(even every polynomial with non-negative coefficients) of a compact-friendly operator
is also compact-friendly. A fairly complete treatment of compact-friendly operators
is given in [1]. Lastly, an operator from a Banach lattice to a Banach space is AM -
compact if it takes order intervals into relatively compact sets. Clearly, each compact
operator is necessarily AM-compact.

For all unexplained notation and terminology, we refer to [1, 2].

Definition 1.1. A positive operator B € L(FE) is called weakly compact-friendly
if there exist three non-zero opeators R, K, and C on E with R, K positive and K
compact such that R € [B), and C is dominated by both R and K.

Let us start by recalling some more terminology. A continuous function ¢ : 2 — R,
where () is a topological space, has a flat if there exists a non-empty open set )y in
() such that ¢ is constant on 5. If  is a compact Hausdorftf space and ¢ : 2 —
R is a continuous function, then M, : C(Q) — C(2) denotes the multiplication
operator generated by ¢, i.e., for each function f € C(2) and each w € ) we have
(M, f)(w) == p(w)f(w), or briefly M,,f = ¢f. The function ¢ is called the multiplier.
It is straightforward to check that a multiplication operator M, is positive if and only
if the multiplier ¢ is positive.

The following result, which is Theorem 10.65 in [1], characterizes compact-friendly

multiplication operators on C'(2)-spaces.

Theorem 1.2. A positive multiplication operator M, on a C(Q2)-space, where ) is a

compact Hausdorff space, is compact-friendly if and only if the multiplier ¢ has a flat.
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Unlike Theorem 1.2, the multiplier of a positive multiplication operator having a flat
is not necessary for the multiplication operator to be weakly compact-friendly. This
fact, which is the subject matter of the following example, also shows that there are

weakly compact-friendly operators that are not compact-friendly.

Example 1.3. Consider the space E of all continuous functions f : [0,1/2] — R
equipped with the usual uniform norm. The multiplication operator M, : ' — E with
the multiplier ¢ defined by ¢(w) := 1 — 2w for all w € [0,1/2] is not compact-friendly
by Theorem 1.2, since ¢ has no flats. To see that M, is weakly compact-friendly,
choose R = C' = K as the required three operators for the weak compact-friendliness

of M,, where K is the rank-one (and hence, compact) operator on E defined by
(Kf)(w):=(1—=2w)f(0) for all f € E and w € [0,1/2].

2. INVARIANT SUBSPACES OF WEAKLY COMPACT-FRIENDLY OPERATORS

We start this section, in which the main results of the present note are provided, with

the notion of topological fullness of the center of a Banach lattice.

Definition 2.1. The center Z(E) of a Banach lattice E is called topologically full
if whenever x,y € E with 0 < x <y one can find a sequence (T),)nen in Z(FE) such
that | T,y — x| — 0.

Banach lattices with topologically full center were initiated in [5]. Spaces of this kind
are quite large and contain, for instance, Banach lattices with quasi-interior points and
Dedekind o-complete Banach lattices (see [5, 6] for details).

Before proceeding, let us first observe that [6] if 0 < x < y and T,,y — x, then one
has (T,;F ANy = (T,y)t Ay — & Ay = x, so we may assume that 0 < T, < [ for all
neN. Set Z(E), :={T € Z(E)|0<T<I}.

It is shown in [4, Theorem 3.10] that for a locally quasi-nilpotent positive operator
B on a Banach lattice E with a quasi-interior point for which [B) contains an oper-
ator which dominates a non-zero AM-compact operator, [B) has an invariant closed
ideal. The following result extends this to positive operators on a Banach lattice with

topologically full center, following similar lines of thought.

Theorem 2.2. Suppose that B is a positive operator on a Banach lattice E with
topologically full center such that

(i) B is locally quasi-nilpotent at some xy > 0, and

(ii) there is S € [B) such that S dominates a non-zero AM -compact operator K.
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Then [B) has an invariant closed ideal.

Proof. Since the null ideal Ng of B is [B)-invariant, we may assume that Np = {0}.
Let z € E such that Kz # 0. This means that at least one of the vectors (Kz)*
and (Kz)~ is non-zero. Suppose (Kz)* # 0. Then, by topological fullness of Z(F),
there exists an operator M € Z(FE);; such that M|Kz| # 0. Indeed, otherwise for
all M € Z(E);+ we would have M|Kz| = 0. But then, for the sequence (7},)nen in
Z(E)14 with T,(|Kz]) — (Kz)" in norm, we would have (Kz)™ = 0, which is a
contradiction. Suppose now that there exists M € Z(FE);4 such that M|Kz| # 0.
From M((Kz)*)+ M((Kz)~) # 0 it follows that M((Kz)") # 0 or M((Kz)~) # 0.
Suppose that M((Kz)*) # 0. But since M is a lattice homomorphism, we have
(MKz)" # 0, and so it follows from M ((Kz)")AM((Kz)") = (MKz)"A(MKz)” =0
that (MKz)~ = 0 and MKz > 0. Put K; := MK. It follows from Np = {0} that
BKyz # 0, hence BK; # 0. It is also clear that BK; is AM-compact and is dominated
by BS.
Let J be the semigroup ideal in [B) generated by BS, that is,

J ={A1BSAy | A1, Ay € [B)}.

It can be verified directly that J is finitely quasi-nilpotent at xy. Since BS € J and
BS dominates a non-zero AM-compact operator, J has an invariant closed ideal by
[1, Theorem 10.44]. Now [1, Theorem 10.49] yields that [B) has an invariant closed
ideal. 0

The next result is a generalization of [1, Theorem 10.57] which states that if a non-
zero compact-friendly operator B on a Dedekind-complete Banach lattice E' is locally
quasi-nilpotent, then there exists a non-trivial closed ideal that is invariant under [B).
We show that Dedekind completeness and compact-friendliness are not needed and that
E having topologically full center and B being weakly compact-friendly are sufficient.
The proof is a modification of the proof of Theorem 10.57 in [1] and uses Theorem 2.2.

Theorem 2.3. Let E be a Banach lattice with topologically full center. If B is a locally
quasi-nilpotent weakly compact-friendly operator on E, then [B) has a non-trivial closed

mvariant ideal.

Proof. For each x > 0, denote by J, the ideal generated by the orbit [B)z; that is

J. :={y € E| |y| < Ax for some A € [B)}.
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Since the identity operator belongs to [B), we have that x € J,, so this is a non-zero
ideal. Note that J, is [B)-invariant: because, if y € J,, then |y| < Ax for some A € [B)
and hence for any A; € [B) we have

|Ayy| < Asly| < Ay Ax,

yielding that Ay € J, since the operator A; A belongs to [B) which is a multiplicative
semigroup. Therefore, in case where there exists a positive x € E such that the ideal
J, is not norm-dense in E, the proof is complete. So, suppose that J, = F for each
x> 0.

Fix three non-zero operators with R, K positive, K compact, and satifying
BR < RB, |Cz|<C|z|, and |Cz|< K|z| foreachz € E.

Since C' # 0 there exists some z; > 0 such that Cx; # 0. This means that at
least one of the vectors (Cxz;)t and (Cz1)~ is non-zero. Suppose (Cz1)T # 0. Then,
by topological fullness of Z(FE), there exists an operator M; € Z(E);y such that
M;|Cz| # 0. Indeed, otherwise for all M; € Z(E);y we would have M;|Cz;| = 0.
But then, for the sequence (T),)nen in Z(E)i4 with T,(|Cz]) — (Czqy)™ in norm,
we would have (Cz1)™ = 0, which is a contradiction. Suppose now that there exists
M, € Z(E); such that M;|Cxz4| # 0. From M;((Cxz1)") + My((Cx1)~) # 0 it follows
that M;((Cx1)") # 0 or My((Cx1)”) # 0. Suppose that M;((Czq)™) # 0. But
since M is a lattice homomorphism, we have (M;Cxz;)" # 0, and so it follows from
M;((Cxy)™) A My((Cxqy)™) = (MiCxy)t A (MCx1)” = 0 that (M;Cz)” = 0 and
MCxzy > 0. Let 9 := M;Cx; > 0 and m; := M;C. Note that m; is dominated by R
and K.

Now we have J,, = F, and since C' # 0 there exists some y € J,, and an operator
A; € [B) such that 0 < y < Ajxs and Cy # 0. We claim that there exists M € Z(E)4
such that CM A xs # 0. Otherwise, if CMAyzy = 0 for all M € Z(FE)4, we would
have CT,, A xs for each n € N for the sequence (7},),en for which T,,A;xs — y. This
would yield C'T,,Ayxys — Cy and C'y = 0, which is a contradiction. Since CM Ajx5 # 0,
one has |[CMAjxy| # 0. Suppose (CMAz5)" # 0. By topological fullness of Z(E),
there exists a sequence (T, )nen in Z(E)14 such that T,,(|CMAyzs|) — (CMAjxe)*.
Since (CMAjzy)™ # 0, not all T,,(|CM A xs|) are zero, and we can choose My €
Z(E)1s with My|CMA x| # 0. Notice that Mo((CM Ayzs)*) A My((CMAyzs)~) =
0. Since My((CMAjzy)™) # 0, we have My((CMAjx9)”) = (MaCMAz5)” = 0,
which yields MoCMAixy > 0. Put 3 := MyCMAxy > 0 and m := MyCMA; and
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observe that 7y is dominated by RA; and K A;. Repeating once more the preceding
argument with x5 replaced by x3, we then obtain an operator As € [B) and an operator
m3 : E — E such that m3z3 > 0 and 73 is dominated by RA, and KAs. From
mymem 1 = m3x3 > 0, we see that mgmom; # 0.

Set S := RA;RA;R > 0. Since |mgmemiz| < S|z| for each z € E, it follows that
S # 0. Moreover, since each 7; (i = 1,2,3) is dominated by a compact operator, we
have by [2, Theorem 5.14] that m3mam is compact. Moreover, because R, A;, and
Ay belong to [B), so does S. Thus, [B) contains a non-zero positive operator which

dominates a compact operator. Now, invoke Theorem 2.2 to complete the proof. [
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