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An inverse problem is the task that often occurs in many branches of science and mathematics
where the values of some model parameter(s) must be obtained from the observed data. The
transformation from data to model parameters is a result of the interaction of a physical system.
Inverse problems arise for example in geophysics, medical imaging, remote sensing, ocean acoustic
tomography, nondestructive testing, and astronomy. In inverse problems, the optimal
overdetermination conditions are analyzed in some classical boundary conditions or and similar
conditions given at a point. A literature review is given in

o J.R. Cannon, Hong-Ming Yin, Numerical solutions of some parabolic inverse problems,
Numerical Methods for Partial Differential Equations, 2, 177-191, 1990.

Some widely used numerical methods (linearization, variational regularization of the Cauchy
problem, relaxation methods, layer-stripping and discrete methods) are summarized in

o V.Isakov Inverse problems for partial differential equations, Applied Mathematical Sciences,
Vol.127, Springer, 1998.

Some inverse boundary value problems are given in

o Yu. Ya. Belov Inverse problems for partial differential equations, Inverse and lll-posed
Problems Series, VSP, 2002.
and the generalized overdetermination conditions such as nonlocal, integral, and final
overdetermination conditions are used by

o A.l. Prilepko, A. B. Kostin, "Some inverse problems for parabolic equations with final and
integral observation," Mat. Sb., 183, No. 4, 49-68 1992.

o J.R. Cannon,Yanping Lin, and Shingmin Wang, "Determination of a control parameter in a
parabolic differential equation," J. Austral. Math. Soc., Ser. B., 33, 149-163, 1991.
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Inverse problems are typically ill posed, as opposed to the well-posed problems more typical when
modeling physical situations where the model parameters or material properties are known. Of
the three conditions for a well-posed problem suggested by Jacques Hadamard (existence,
uniqueness, stability of the solution or solutions) the condition of stability is most often violated.
While inverse problems are often formulated in infinite dimensional spaces, limitations to a finite
number of measurements, and the practical consideration of recovering only a finite number of
unknown parameters, may lead to the problems being recast in discrete form. In this case the
inverse problem will typically be ill-conditioned. In these cases, regularization may be used to
introduce mild assumptions on the solution and prevent overfitting. Many instances of regularized
inverse problems can be interpreted as special cases of Bayesian inference. Cannon,et all. give
approaches for the existence and uniqueness of a global solution pair (u, p) under some certain
assumptions. Existence and uniqueness of a solution under some restrictions on the initial data
are established in lvanchov's article about the reconstruction of a free term in the heat equation.
The well-posedness of a problem of determining the parameter is studied by Ashyralyev. The
generic well-posedness of a linear inverse problem is studied for values of a diffusion parameter
and generic local well-posedness of an inverse problem are proved by Choulli and Yamamoto
where the unknown control function is in space variable.

o J.R. Cannon,Yanping Lin, and Shingmin Wang, "Determination of a control parameter in a

parabolic differential equation," J. Austral. Math. Soc., Ser. B., 33, 149-163, 1991.

o N.I. lvanchov, "On the determination of unknown source in the heat equation with nonlocal
boundary conditions", Ukranian Mathematical Journal, Vol. 47, No.10, 1995.
A. Ashyralyev, On a problem of determining the parameter of a parabolic equation, Ukranian
Mathematical Journal, 9, 1-11, 2010.
o M. Choulli, M. Yamamoto, Generic well-posedness of a linear inverse parabolic problem with
diffusion parameter, J.Inv. lll-Posed Problems, 7, 3, 241-254, 1999.
M. Choulli, M. Yamamoto, Generic well-posedness of an inverse parabolic problem-the
Hoélder-space approach, Inverse problems, 12, 195-205, 1996.
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The inverse problems are characterized, first of all, by the lack of coefficients and/or conditions. In

o A.A. Samarskii, P.N. Vabishchevich, Numerical methods for solving inverse problems of
mathematical physics, Inverse and lll-posed Problems Series, Walter de
Gruyter,Berlin,Newyork, 2007.

coefficient inverse problems in which equation coefficients and/or the right hand side are
unknown are distinguished. As a typical example of unknown coefficient inverse problems, the
following parabolic equation

f29 = 2 (k) 2829) +p (1) (x), 0<x <], 0<t<T, (1)
with the conditions
u(t,0)=u(t,/)=0,0<t<T,
u(0,x)=¢(x),0<x <,
u(t,x")=p(t),0<x"<,0<t<T

where (u(t, x), k (x)) is the solution pair is given. Three classes of inverse coefficient problems
arising in engineering mechanics and computational material science are considered in

o A. Hasanov (Hasanoglu), Some new classes of inverse coeffcient problems in nonlinear
mechanics and computational material science, Int. J. Non-Linear Mechanics, 46(5),
667-684, 2011.

Under same conditions, problem (1) where (u(t, x), p(t)) is the solution pair is known as right
hand side identification problem.
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Also in

o O. Demirdag, The boundary value problems for parabolic equations with a parameter,
Master Thesis, The Graduate School of Science and Engineering, Fatih University.

problem (1) where (u(t,x),q (x)) is the solution pair with the conditions

u(t,0)=u(t,/)=0, 0<t<T,
u(0,x)=¢(x),0<x <,
u(t",x)=p(x),0<x<,0<t"<T
is considered. Another type is boundary value inverse problems where missing boundary
conditions can be identified, for instance, from measurements performed inside the domain. As an
example, the parabolic equation (1) with the following conditions can be given.
u(t,0)=0,0<t<T,
u(0,x)=up(x),0<x <,
u(t,x")=¢(t),0<x*</,0<t<T.

In this case, the unknown pair is (u(t,x), k (x) %) . Evolutionary inverse problems in which

initial conditions need to be identified are as the parabolic equation (1) with the following
conditions
u(t,0)=u(t,/)=0,0<t<T,
u(T,x)=ur (x),0<x <,
u(t,x")=¢(t),0<x*<,0<t<T.
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An important class of inverse problem is the determination of unknown right-hand sides of
equations. In such problems, additional information about the solution is provided either
throughout the calculation or over some part of the domain. The numerical algorithm for solving
inverse problem of reconstructing a distributed right-hand side of a parabolic equation with local
boundary conditions is studied

o V.T. Borukhov, P.N. Vabishchevich, Numerical solution of the inverse problem of
reconstructing a distributed right-hand side of a parabolic equation, Computer Physics
Communications, 126, 32-36, 2000.

o A.A. Samarskii, P.N. Vabishchevich, Numerical methods for solving inverse problems of
mathematical physics, Inverse and lll-posed Problems Series, Walter de
Gruyter,Berlin,Newyork, 2007.

In these articles, the numerical solution of the identification problem and well-posedness of the
algorithm is presented. For reconstructing the right hand side function f (t,x) = p (t) g (x) where
p (t) is the unknown function, the solution is observed in the form of

u(t,x) =1(t)q(x)+w(t,x) where 57 (t) = [ p(s)ds. Then, an approximation is given for

w (t, x) via fully implicit difference scheme The solutlon of system constructed by the difference
scheme is searched in the form

witt =yt w iz, i =01, M,
where k is an interior grid point and the well-posedness of the algorithm is given by a apriori

estimate

1
max |zj| < T max |—
0<i<M 0<i<M | P,

which is based on maximum principle. Thus, in the first article, |z;| < 1 at small enough
T=0(1), i.e. it is necessary to use a sufficiently small time step.

(al/)y)x‘,-
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In this talk, we investigate the well-posedness of the inverse problem of reconstructing the right

side of a parabolic equation with nonlocal conditions

u X 2U X
2 = a(x) T4 gu (t,x) +p (1) q (x) + F (£,x),

0<x</l,0<t<T,
u(t,0)=u(t, 1), uc(t,0)=ux(t,/),0<t<T,
u(0,x)=¢(x), 0<x <,

u(t,x*)=p(t), 0<x*<1,0<t<T,

where u (t,x) and p (t) are unknown functions, a(x) > > 0 and ¢ > 0 is a sufficiently large

number with assuming that

a) g (x) is a sufficiently smooth function,

b) g (x) and ¢’ (x) are periodic with length /,
) q(x*) #0.
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In contrast to Yamamoto's work, the unknown function in our problem depends on the time
variable. Comparing to Vabischevich's work, we give the well-posedness in differential case and
for the solution of nonlocal problem.
In the present work, the well-posedness of the right-hand side identification problem for one
dimensional parabolic equation with nonlocal boundary conditions and multidimensional parabolic
equation is considered. The difference schemes of the first and second orders of accuracy of these
problems are presented. Under the applicability conditions, well-posedness of these difference
schemes are investigated.
Let us briefly describe the contents of the various sections. It consists of fifth sections.

is the introduction.

is about the well-posedness of the right-hand side identification problem for a

parabolic equation.

includes the approximate solution of the right-hand side identification problem
with nonlocal conditions. The first and second orders of difference schemes and
their numerical analysis are given.

is the conclusion.
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RHS IDENTIFICATION PROBLEM

The differential case

We consider the inverse problem of reconstructing the right side of a parabolic equation with

nonlocal conditions

u X 2[] X
Q) = a() 24— gu (8,x) + p (£) q (x) + F (£,%),

0<x</,0<t<T,
u(t,0) =u(t, ), uc(t,0) =uc(t,1),0<t<T, (3)
u(0,x)=¢(x), 0<x </,

u(t,x*)=p(t), 0<x*<,0<t<T,

where u (t,x) and p (t) are unknown functions, a(x) > > 0 and ¢ > 0 is a sufficiently large
number. Assume that

a) g (x) is a sufficiently smooth function,

b) g (x) and g’ (x) are periodic with length /,

) q(x) #0.
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In this talk, positive constants, which can be differ in time will be indicated with an M. On the
other hand M (&, B, -+ ) is used to focus on the fact that the constant depends only on a, 3, - - .
With the help of A we introduce the fractional spaces E,,0 < a < 1, consisting of all v € E for
which the following norm is finite:

Ivilg, = sup 7 ~* [Aexp {~TA} v]¢ . (4)
>0

ol
To formulate our results, we introduce the Banach space C [0,/], a € (0,1), of all continuous
functions ¢ (x) defined on [0, /] with ¢ (0) = ¢ (), ¢' (0) = ¢’ (/) satisfying a Hélder condition for
which the following norm is finite

. ¢ (c+h) =9 ()
19138, = W0llcio + _sup  EPEmEE,

[¢llcpon = max, |9 (x)].

0<x</

Then, the following theorem on well-posedness of problem (3) is established.
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o0 20+2 o2u
Theorem 2.1. Let ¢ (x) € C 0,1, (t)€C[0,T] and f(t,x) € C ([O, T],C [0,/]).

Then for the solution of problem (3), the following coercive stability estimates
[luell ( o2 )+ flull ( Q2042 ) <M< a) |10l o,
c(o.7.c [o0J] cl.71.c [0

+M(a,6,0,0,x",q,T) [ [l@ll 22+ [IF]l o2\ Flellcor | (5)
c o c([o,r],c [o,/])

Ipllcio,ry <M (< a) o[l cpo. 7y
+M (a,8,0,0,x*,q, T) |[|¢lloaer2  +|F] o2\ T el (6)
c o c([o,T],c [o,/])

hold.
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Proof. Let us search for the solution of the inverse problem in the following form

u(t,x) =n(t)q(x) +wl(tx), (7)
where .
10 = [ p(s)ds, (8)
Taking derivatives from (7), we get
WX~ p(r)q )+ 220X ©)
and ?u (t,x) d’q(x) *w(t,x)
P Sl e A q + ! .

w ! (t) dx? dx2
Moreover if we substitute x = x* in equation (7), we get
u(tx") =11 (6)q () + w (t.x) = p ()
and

_ o) —w(tx)
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Taking derivative of both sides, we get

P (£) = wi (£,X°)
t) = 11
p (1) o (1)
Using triangle inequality, from it follows that
(1) — wy (t, x* N N
(o)) = | P 2D < o) (1 0]+ e (1))
q(x*)
* / *
<M ) (e o' (6] + o ma e (65°)])
% ’
<M () (mas o' ()] o, e 0 n ) (12)

for any t,t €10, T].
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Here, using equations (7) and (10) and under the assumptions on g (x), one can show that
w (t, x) is the solution of the following problem

w(t,x 2 X 2 X
P = a() )+ a (x) PR S

p(t)=w(t.x")
_awq(x)—aw(t,x)—&-f(t,x),o<x<l,0<t§T, (13)
w(t,0) =w(t, 1), wx (t,0) =wx (t,1),0<t<T,
w(0,x) =¢(x), 0<x <.

So, the end of proof of Theorem 2.1 is based on the inequality (12) and the following theorem.
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Theorem 2.2. For the solution of problem (13), the following coercive stability estimate

[lwell o\ SM(adoax"q.T) | llollee +|f] on \ +lellicpor
C<[0,T],C [0,/]) Cc [0] C<[0,T],C [o,/])

(14)
holds.
Proof. We can rewrite the problem (13) in the abstract form
Wt—l—Aw—(aq —oq)w-i-f( t),0<t<T,
w (0) = a(x*) (15)

in a Banach space E = C[0, /] with the positive operator A defined by

?u (t,x)

Au = —a(x) 32

+ou
with
Ay ={u(x):u v " €Cl01],u(0)=u(l),uc(0)=ux(N)}.
Here, f (t) = f (t,x) and w (t) = w (t, x) are known and unknown abstract functions defined on
[0, T] with values in E = C[0, /], w (£, x*) is unknown scalar function defined on [0, T],

g=q(x), q
number.

" _

q" (x), ¢ = ¢ (x) and a = a(x) are elements of E = 8[0,/} and g (x*) is a
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By the Cauchy formula, the solution can be written as

¢ " _
w(t)=e HAp— / e_(t_s)Aaqqi*aqw (s,x*)ds (16)
0

t 0 t
+/ef(t75)AP(5) (3;7* O'q) ds+/e*(t75)Af- (S) ds.
0 0

Taking the derivative of both sides, we obtain that

t

"n_ " _
we () = —Ae’tA(p+/Ae’(t’S)Aaqqi*Uqw (5,x*) ds — a"qi*""w (t,x%)
0

t
n_
ds + (29 pr Uq)p(t) - /Ae’(f*S)Af(s) ds+f (t).
0

t
_/Aef(rfs)AP(S) (aq" —oq)

q
0
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Applying the formula

¢ "_ ¢ "_ r
/Ae_(t_s)Aaqqi*ng (s,x")ds = /Ae_“_s)Aaqqi*gq / wy (z,x*) dzds
0 0

¢ "_
+/Ae*(t*5)*‘aqqi*m(p(x*)ds

and changing the order of integration, we obtain that

t ot
/Ae (t= S)Au (s, x* //Ae (t= SAUWZ (z,x") dsdz
q* q*
0 z
"_
+/Aef(t75)Aaqqi*m7(p(x*)ds.
Then, the following presentation of the solution of (13)
tot .
we (t) = Ae g + //Aef("hfs)Aaqqi*ngZ (z,x*) dsdz

0 z

t " ¢ "_

+/Ae_(t—s)A aq _ crq(p (x*) ds — /Ae—(t—S)Ap (s) (aq* 7q) ds
q q

0 0

~ [ Ae e 5054 BT 0D ) (e 4 £ (0= 1 Ge (0
0 k=1

*
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Here,
Gi (1) = Ae Py,

n_
Ae(t=9)A aqqi*tquz (z,x) dsdz,

S
=
I
o
N\”

¢ "n_
Go(t) = — [ Ae-(t-9aP () (2a" = a) o
0 q*

t
Gs (t) = — /Ae’(t’s)Af (s) ds,
0

65 ()= CL D (o (1) —w (1)) + £ (0.
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It is very well known that, from the fact that the operators R,exp {—AA} and A commute, it
follows that (Ashyralyev, Sobolevskii)

IRlle,~e, < IRk (17)

Now, let us estimate Gy (t) for any k =1,2,3,4,5,6 separately. Applying the definition of norm
of the spaces E, and (17), we get

6@l = [Jaee] <
o

=1

A
o 1Al

IN

EE Aol -

Using estimate (A. Ashyralyev, P.E. Sobolevskii, Well-Posedness of Parabolic Difference
Equations, Birkhiuser Verlag, Basel, Boston, Berlin, 1994.)

llexp {~tA}g_g < Me™*, (18)

we get
161 (t)llg, < Mu[[Aglle, (19)

for any t, t € [0, T].
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Let us estimate G, (t)

t

¢ "
G2 (t)llg, = //Ar:‘*(t*s)AuwZ (z,x") dsdz
z

5
0 7 Ex
£t i o
< // Ae_(t_s)A¥ ds |w; (z,x")| dz.
0 z 9 Ea
equation (4), we have that
4 " 4 "
/’Aef(f*s)AL —o9 ds:/ Ae—(t=5)A29_— 941 4
q* q*
z Ex z E
; aq’ —oq
+sup/’Al_”‘Aef’\AAe’(t*S)Ai* ds.
A>07 q E
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By the definition of norm of the spaces E, , we get

¢ " 1"
—(t-5)Ad9" —0q l1-a , —(t-sy439" —0q
/‘Ae( )7* (t—s)' ™" Ae (=oAL 74
z

ds =/t(t—s)”‘_1

ds
E q* E
¢ " aqt "
</(t—s)‘“ds aq" —oq| _ [ _(t=5s) aq" —ogq
- q* E L q* E
z o 113
Tat /l_o_
< — 122 = My (a,00a,x",q, T).
« q £,
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Using estimate (Ashyralyev, Sobolevskii, 1994)

| A% exp {—tA}||g_p < Me 't ", (20)
we can obtain that

¢ " _
/‘ Al g pe—(t-5)A 29 - oq

z

ds
E

¢ 2—nyl-a _ B
< / ()\2 A )2_lxd5 H/\-I—zt SAe,/H-Qz sA
+t—s

2 E—E

ds
E

Alftx
ds
Eaz/ (Att—s)>"

Al-e ¢
\ ( <a—1>(A+r—s>”],>
Al-a
‘. ((1—a> <A+t—z>”]>
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Then,
t

"
sup Alf"‘Ae_AAAe_(t_s)Au ds
A>0 q E
1"
aq’ —oq 1
<y )| 2 s M),
o

Then, we get

1
— O
Ae— (5424 = q

ds < Ms (a,0,a,x*,q, T)
Eq

foranys,0<z<s<tand

t
162 (2)le, < Ms (3,0,0.x", . T) [ e (2,5 d2
0

t t
< Mg (2,00, %", q, T)/Orgaélmz (z.%)| dz < Mg (2,00, X", q, T)/||WZ|\Ea dz.
SXS
0 0
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Gs (t) is estimated as follows
t aq’ —oq
16: (1), = | [ e~ 12— (") ds

q*
0 Ea

¢ " _
< | [ a2 Tae] g ().
0 Ea
Since

lp () < max [ ()] = ol < llole, <A, g, IA0lle, <M A9, (23)

and using the estimate (21) and choosing z = 0, we obtain
163 (D)llg, < M7 (2,0, %%, 0, T) [|Agll, (24)

forany t € [0, T].
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By the estimate (21), the estimation of G4 (t) is as follows

t

(1—s ad” — o .
1G5 (g, = | [ A9 (5) % ds| <My (a.0x . a T el (25)
0 Ea

Now, let us estimate Gs (t). By the definition of the norm of the spaces E, , we get

t
165 (8)lg, = | [ Ae™(-94¢ (s) ds
0 Ex
t

t

= /Ae*(f*S)Af(s) ds|| +supAl™® Ae”\A/Ae*(t*S)Af(s) ds
A>0

0 0 E

Fatih University (Department of Mathematics) Parabolic Inverse Problem 09/03/2012 25 /87



Using equation (4), we have that

/tAe’(f*S)Af(S) ds| < /t(t—s)rl H(t_s)lfu Aef(tis)Af(s)HEds
0 £ 0

« 0

t (t=9)]'
< [ (=9t asllcie, = Ilcqe, (— | )
0

tlx
= fllce) = Mo (& T) [Ifllce,) - (26)
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Now, we consider the second term. Using the equation (4), we get

t
Al-a Ae*“‘/Ae*“*S)Af(s) ds
0 E—E

t
<A1*“/HAe*“§“AH
E 0

x [ae= 5441 (s)]| ds = Al’“/t (#)‘H (#)’1
0

t=sHA g - EFAA tostA \ 1Y 4 gt A

XH 7 Ae HE—>E < 2 ) Ae Fs) Eds
1-a / t—s+A a2
< Miodt [ (552)77 | flg, ds
0

t s (t—;ﬂ»)“‘l ¢

1-a t—s+A ) _
< MioAt [ (552) 7 ds 1 ey = Muo ey | it

0

for any A > 0.
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Then,

t
sup A1 % Ae_)‘A/Ae_(t_s)Af(s) ds
0

A>0 c
1-a
< Muolfllce (355) < Mu (@) fllee, (27)
By the estimates (26) and (27), we get
1Gs (t)llg, < Mz (&, T) [|fll (e, - (28)
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Let estimate Gg (t).

aq’ —o N
165 0l = | o o )= w (ex) + £ 1)
Applying the formula
t t
w (t,x*) = w (0, x") +/Wz (z,x*)dz = ¢ (x¥) +/Wz (z,x%) dz,
0 0

the definition of the norm of the spaces E, and the estimate (23), we get

t
"
aq”’ —oq
165 0l < || SR (el + s e, + [ el d2 ) + 17l e

0

t

=14 .0.0.50) [ Iollcor + 140l + [ Il 02 ) +fllciey- (29)
0
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Combining the estimates (19), (22), (24), (25), (28) and (29), we get

t
[wellg, < Mi[[Agllg, +Me (a, 000, %", q, T)/szl\Eu dz
0

+Mz(a,0,0,x", 9, T) [|[Agllg, + Mg (3,0, 0, %", q, T) [lpllcpo, 7y + Mz (&, T) (|| (e,

t
My (a,6,0,x7, q) (IIquo,r] + A9l +/||Wz||5a dZ) il - (30)
0
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From (30), using Gronwall’s integral inequality, we get
Iwellg, < eel@raxal) [my | Age,
My (3,005, 4, T) |Aplg, + Ma (2,0, %", 0, T) ol co 7
Mha (2,6,0,5,0) (lpllcpr) + 1Aglle, ) + (Miz (@ T) + 1) [Fl ey - (31)

The following theorem finishes the proof of Theorem 2.2.
Theorem 2.3. (Ashyralyev, Sobolevskii) For 0 < a < % the norms of the spaces E, (C[0, /], A)

and C?%[0, /] are equivalent.
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Note that, in similar manner one can obtain the well-posedness of the inverse problem of
reconstructing the right side of a multidimensional parabolic equation under restrictions for q (x) .
Let us consider boundary value problem for the multidimensional parabolic equation

du(t,x) alrlu(t, x)
= |r\§2m a,(x)m —ou(t,x)+p(t)q(x)

+f(t,x), xeER"0O<t<T,|rl=r+n+-+r, (32)
32

u(0,x) = ¢(x),x € R",
u(t,x*)=p(t),0<t<T, x*€eQCR",
where u (t,x) and p (t) are unknown functions, a, (x) > > 0 is sufficiently smooth function and

o > 0 is a sufficiently large number. Here, we assume that g (x) is sufficiently smooth and
bounded function and g (x*) # 0.
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It is assumed that the symbol

BX(&) = Y ar(x)(ig)" -+ (ig,)" &= (&, &) ER”

|r|=2m
of the differential operator of the form
alrl
B* = ar(xX) ===+

acting on functions defined on the space R”, satisfies the inequalities

0< My g < (=1)"B* (&) < Mp &> < o0

for & # 0.
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Then, the following theorem on well-posedness of problem (32) exists.
o

To formulate our results, we introduce the Banach space C (R"), a € (0,1), of all continuous
functions ¢ (x) defined on R" satisfying a Hélder condition with the norm

9 () = ¢ (y)]
L \¢(X)I+X’y£"§x#y xyF
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o0 20+2 o2u
Theorem 2.4. Let ¢ (x) € C (R"), p'(t) € C[0,T] and f(t,x) e C ([0, T].C (]R")).

Then for the solution of problem (32), the following coercive stability estimates

u o2 +lu o 2042m <M (x*,q) |l

[ tHC([O,T],CZ (]Rn)) [ ”C([o,r],c2 " (Rn)) < a) o'l co,m

+M a,&,a,a,x*'q'T o2a+2m +||f o + ,
( ) H(PHC + '™ I ||C([O'T]vcz (]Rn)> ||PHC[0,T]

lpllcio,ry <M (< @) [l0"ll 0,7y

+M(2,8,0,0,5,0.T) |l@lzan  +UF o o\ ol
C (R™) C([O,T],C (]R")>

hold.
The proof of Theorem 2.4 follows the scheme of the proof of Theorem 2.1 and it is based on the

following theorems.
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Theorem 2.5. (Ashyralyev, Sobolevskii) For 0 < a < ;L and the indicator y € (0,1), the norms
of the spaces E, (C¥# (R"), A) and CF+2m% (R") are equivalent.
Theorem 2.6. (Ashyralyev, Sobolevskii) The solution of elliptic problem

olrlu(x
| ; ar(x)ﬁ *(TU(X) = f(X),X eR"
r|l=2m
obey the coercivity inequality
alrly

<M () [Ifllcrrey -

no.o.. n
\r[=om 0x; ox;,

CH(R")

Fatih University (Department of Mathematics) Parabolic Inverse Problem 09/03/2012 36 / 87



RHS IDENTIFICATION PROBLEM

The difference case

For the approximate solution of the problem (3), the Rothe difference scheme

k_ k=1 ko ok yk
ug—u; _ Upq—2uptu, o k k
% — a(x,,)"*% —ouk +p qn+f(tk.Xn)y

kaP(tk),qn:q(Xn),Xn:"hv ty = kT,
1<k<N,1<n<M-1,Mh=I,Nt=T,
u(‘,‘ =u‘,\‘4,—3u6‘+4uf—u§ =u‘,\‘,,_2—4u;\‘,,_1+3u;\‘,,,0§k§ N, (33)

W=¢(x), 0<n<M,

s

”M —uk=p(t),0<k<N0O<s<M

is constructed. Here, gs # 0,490 = qu and —3q0 + 491 — g2 = qm—2 — 4qm—1 + 3gum are assumed.
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Let A be a strongly positive operator. With the help of A we introduce the fractional spaces
E/(E,A),0 <a <1, consisting of all v € E for which the following norms are finite:

IVllg =sup|A*A(A+A4) || . (34)
o A>0 E

o & ok
To formulate our results, we introduce the Banach space C;, = C [0,/],, a € (0,1), of all grid

functions ¢h = {(pn}M ! defined on [0, /}h = {xo = nh,0 < n < M,Mh =1} with ¢y = ¢y,
—3¢k + 49k — ok = ¢k, _, — 4¢%,_| +3¢%, equipped with the norm

o = +  sup - rh) ",
”‘Ph“ch l#nllc, 1§n<n+r§M}¢n+, ¢ (rh)

Ipallc, = max [,

1< <M

Moreover, C; (E) = C ([0, T],, E) is the Banach space of all grid functions ¢7 = {¢ (2} N- L

defined on [0, T]T{fk = kT1,0 < k < N, Nh= T} with values in E equipped with the norm

o7l c.e) ¢ (t)lle -

1<k<N

Then, the following theorem on well-posedness of problem (33) is established.
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Theorem 2.7. For the solution of problem (33), the following coercive stability estimates
h_ b N
ul —u N
H{k k_l} +H{D;2,u{<'}
T o 20 k=1

MG, ¢, T) Hoﬁq;h

{P(fk)*P(tk—l)}N

T k=1

Ch clo.7l,

CT<02K) <M(q.s)

N
s |4 F (2 N
g H{ ( k)}k=1 cf<c°2 ) o llcpo, .

h

le%llcior), < M (a.5)

{P(fk)*P(fkfl)}N

T

k=1llcpo, 7],

MG, ga, T) HD,Q,(ph

N
s+ || F0 (2 H sany et
&l H{ ( k)}kZl CT(C,,Z ) oMo, 1,

hold. Here, f" (t,) = {f (i.“k_,xn)},",/’:_fl ol = {CP(Xn)}nM=_11 ot =Ap (tk)}iv=o,

2. h _ [ upt1—2uptupq ~_ 1 2 h_ . h
Dju" = {7’72 }n:I and a = o (aDhq oq )
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Proof. We search the solution of (33) in the following form
ug = 1"qn + wy, (35)

where

k .
=Y pt, 1<k <Ny’ =0. (36)

i=
Taking difference derivatives from (35), we get

k k—1
u, —u, o 17 o w,
p p qn + p P gn+ p

and

ufr —2uf H Uk Gni1 —2GnF Gt n Wi = 2w wk
2 =1 h2 2
for any n,1 < n < M — 1. Moreover for the interior grid point uﬁ, we have that

ub =nkgs +wk =p(ty)

and .
ty) — w,
’7k — P( ) s (37)
gs
From the last equality, taking the difference derivative it follows that
1 t) — t k _ k=1
pk:f(p(k) P(k 1)_Ws Ws ) (38)
ds T T
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Using the triangle inequality, we get

k k—1
ty) — o (ty— —
‘pk‘SM(q,s)(‘p(k) P (te-1) +’W5 Wy )
T T
_ k k—1
<M(q,s)( max P (te) = p (te-1) max max | s~ Ws
1<k<N T 1<k<N0<s<M T
h h
— w, — w,

< M(q,s)| max M + max ||k k=1

1<k<N T 1<k<N T CoZu
h

for any k,1 < k < N.
Here, {W/?}Q/:o is the solution of the following difference scheme

k_ywk-1 wk 2wk 4wk _wk _
Wy =W, _ n+1~2Wn tWh_q p(tk)=Ws' dn+1—2Gn+Gn-1
" a(xn) 2 +a(xy) B 2

k
fa’w%qnfaw,’,urf(tk,xn),x,,:nh, ty = kT,
1<k<N,1<n<M-1,Mh=I,NTt=T,

Wé‘ = W,\I‘;’,73Wé( +4W1k — W2k = W;(472 74W,\k471 +3W;‘/,,O < k<N,

wl=9(x)), 0<n< M.

n

Therefore, the end of proof of Theorem 2.7 is based on the inequality (39) and the following

theorem.
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Theorem 2.8. For the solution of problem (40), the following coercive stability estimate

H{} <Moo
T 1 CT<ON> -

\
N

gt H{fh ()},

<o 2:1) e llcp,r,
(¢,

Ch y

holds.
Proof. We can rewrite the difference scheme (40) in the abstract form

h_yh X

Wi :Vk—l +A2W/f — (a Cln+1*2hqzn+qn—1 _O-q> P(tkgzws

+ () te =kT,1 <k < N,NT=T, (41)
h _ h

Wy = ¢

in a Banach space E = C [0, /], with the positive operator A} defined by

M-1

n 72 n n—
At = {—a(x")”“h—“z*”l N gu} (42)

acting on grid functions u” such that satisfies the condition

ug = upg, —3ug +4uy —upy = upy—o —4upy—1 +3upy.
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Let denote R = (/ +TA),;)_1 . In (41), we have that

-2 _ ty) — wk
wh = Rw,f_l—&-R’T((aq"+1 9n + Gn1 —0q> ol kz; s +fh(tk)),
s

h?
Vk,1 < k < N. By recurrence relations, we get

k
_ T —2qn + qn—
wf = Rkgh+ Y RK m+1q7 (awfﬂq)p(trn)
m=1 s

k k

—2qn+ qn—

2 Rk—m+1 T (a 9n+1 ‘72n dn-1 aq) Wsm } : RKk—m+1,fgh (t )
me=1 as h m=1

Taking the difference derivative of both sides, we obtain that

h h k k—1
Wy — Wi RT-R b, 1 [ Gni1—2gn+ g1
= _ e — t
T T "+ qs a h2 oq P( k)
k
- - 1 Gn+1 —2qn + qn-1
+ (Rk m+l _ pk m)i(a — t
"12::1 gs h? a)e(tn)
1 Gn+1 —2Gn + qn-1 k
o (a % oq | w
- Zk: (Rk_m+1 . Rk_m) i (a Gn+1 —2Gn + qn-1 70_q) wm
m=1 s h? °
k
TR (1) + y (Rk—m+1 _ Rk—m) £ (t) .
m=1
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Applying the formula

i (Rk—mﬂ _ kam) Wi = Zk: (Rk—mﬂ _ kam) ¢ (x)

m=1 m=1
‘ I
+ Rk7m+l _ kam s s T
X ( P

and changing the order of summation, we obtain that

mk:l (Rk—mﬂ _ kam) Wi = mz:l (Rk—mﬂ _ kam) ¢ (x)
+J§ mé (Rt — glom) WJ%WT (43)
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Then, the following presentation of the solution of (40)

h h k_ pk-1
Wi —wg, _ RY-R b, 1 [ Gnt1—2gn+qn-1
pe A e p ()

k
_ _ 1 gn+1 —2qn + qn-1
} : Rk m+1 Rk m + o
( ) gs <a h? q)p(t )

1 -2 _
4 (aQn+1 qn+dn-1 f(Tq) Wsk

m=1

gs h?
k —
-y (Rk7m+1 _ kam) i (a dn+1 2h<72n +tan-1 (rq) ¢ (%)
m=1
k& 1 —2q, + wl—wi™
_ Z (Rkierl _ Rkim) L (a dn+1 dn T qn-1 —(Tq) s s T
j=1m=j 9s h? T

k 6
+fh (tk) + E (Rk—m+1 _ Rk—m) fh (tm) — Z Jk
k=1

m=1

is obtained.
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Here,
B Rk _ Rk71

Jf = h,
1 p= P
k _
S=y (kaerl _ kam) 1 <a dn+1 2ht¥2n +qn-1 zrq) o (tn),
m=1 s
k
1 -2
K=-y (Rk—m+1 _ Rk—m) 1 ( q"+1h—‘72"+q"1 g'q) o (xs),
m=1 qS
k k . . T -2 + Wm _ Wmfl
E E (Rk—1+1 _Rk—/) = ( An+1 9n + qn-1 —aq) s s
j=1m=j ds h? T

k
:mzz:l (Rk +1 _ Rk )fh(tm)'

1 —2qn+ qn—
gL (a% _gq) (o (8) —wk) + £ (1)
gs
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Now, let us estimate Jf for any r =1,2,3,4,5,6 separately. We start with J{‘.

Rk — Rk |- R .
=" =R " = RMAfp". (44)

Then, applying the definition of norm of the spaces E; and (44), we get

HMe =[R20 <[] [45e]
H1 E W llg = e—e I7h? g
S L . T
- H v llard Ey
Using estimate
P, < e
E—E
we get
ij‘ Ey <My HAiq)h)E, (46)

for any k, 1 < k < N.
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Let us estimate J¥

|4

Eq qs

!

k
1 n —2 n n—
Z (kam#»l _ Rk*fﬂ) — (aqﬂh—w _g'q) p(tm)
m=1 Ex

= ;-
o«

mi:l (Rk—m+1 — kaM) 30 (tm)|| < max o (tm) mz; H (Rk—m+1 - Rk*m) 3‘

, T 1<m<N
Eﬁt

Usin
g Rk—m+1 _ pk—m _ pk—m+1 (I _ R—l) _ _Rk—m+1AZT (47)

and the definition of norm of the spaces E;, we get

i (kaerl _ kam) 3

m=1

k
+sup 2 ’

A>0 m=1

k
< HRk7m+1AxT’aVH
mgl "ol

E

A (A + A7) RIS |
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Let estimate each term seperately. We divide first term into two parts.
k k=1
y HRk—mHAmHE -y HRk—m+1Azr3HE+ |RA T3] -
=1 m=1

In the first part, by the definition of norm of the spaces E; and equation (Ashyralyev, Sobolevskii,
1994)

(I +7A) ™ = ﬁ / thLe~texp {—TtA} dt (for all k > 2), (48)
0
we deduce that

= k—m-+1 T [tk t 1-a tA
T |eemiage] < R T
m= E ( E

iz

B (k —m)! ) Tt)t”
<13l E L7 LA T 2 7tk’m’1+"‘e’tdt
=le 2y =i | ey =

[

~ k-1 T bt (e (1 a1t
= HBHEA 2 m/t( m—1)ata g—at y(k—m—1)(1=a) ;= (1=a)¢ 43
m=1 . 0
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Using the Holder inequality with p = %, q= llfa and the definition of the gamma function, we
deduce that

o
kil HkaerleTEH <lalg ki _ ™ 7(t(k7m—1)zx+aefat)% dt
m=1 h E — Ex = (k—m)! J

® h 1-a
x /(t(k—m—l)(l—a)e—(l—a)t>1?x e
0
k—1 a L & /oo 1-a
= HEHEA 2 ﬁ /tk_'"e_tdt /tk—m—le—tdt
m=1 3 ]
k=1 e

= |a|| & T —m # —m),
=3l X Gyt (= m o+ D) (T (k= m)
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Using T (n) =(n—1)land T (n) = (n—1)T (n—1), we get

(S kel )
mgl HR AhTaHE < llallg mgl k—m) (k—=m)*T (k —m)

(EIPP DA .
= llallg 1« — l12llg RSN T
B (k—m)t" B ((k—m)T)'™*

kT 1 (kr—s)“r
<M, |3 / s [ S )
<M:Ellg | he_o" 2 || ||E£;< .

09/03/2012

Parabolic Inverse Problem
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So, we have that

(SR kD _
Y |[REm A< Mg S < M (T 3y (49)
m=1
In the second part, we have that
[RARTalle < [RAR Tl l13lle < Ma|allg, - (50)
Combining the estimates (49), (50), we get
: k—m+1
Zl HR —m+ A;TaHE < Ms (2, T) |3l - (51)
m=

Let estimate the second term. Using the Cauchy-Riesz formula (Ashyralyev, Sobolevskii, 1994)

1 _
F(A) = 2—7_“,/1‘(2) (z—A) " dz, (52)
T
we get
u AYAX (A + AS -1 Rk7m+1AX ~ __ 1 d z A AX AX -1 3d.
";1 h (A +AR) hTa*ﬁ ngl(1+z)k—m+1A+ZT—1 h(z—TA}) " adz
= 5,08, ™=
-
_ 1oy @) XY (2 a) e
27ti = (14+2)" 1 AT+z \1 h\¢ h '

51USy m=
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Since z = pe™®, with || < Z, the estimate

H(/\_A)AHE—»E = 1M+(‘|1;\)| (53)
yields
G (G ) 3 < m () 0 (8 ) 73] ity = e
Hence

k
Z YAS (A AX)T Rk*m“A;ra

T 1-a AT) dp |
< [y L AT
o m=1[1+2pcosp+p2] 2 e

Summing the geometric progression, we get

k 00
Yo AAY (A + AT R"_’”“A’;T

1 o

O/mzl [1+2pcos¢ + p? }

x(1- L) By,
[1+20cosp+p2z) ATHP T

<y [ O 0o

g (Attp)pt
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Since the function

1
P _ 1+ [1+2pcosp+p?]?
[1+2pcos¢+p2]%,1 2cosp+p

does not increase for p > 0, we have » (0) = > 3 (p) for all p > 0. Consequently,

cos¢ =

k
Yo ATAY (A + AR R"‘"’“A’,jr

m=1

cos O/A"r—i-p 12 ”

for any A > 0. So,

Z A*AX (A + AX) TP RK ML AxTS

m=1

sup

< Mz (¢,a) [[allg - (54)
A>0

E
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Then using (51) and (54), we get

Zk: (kaerl _ kam) 3

m=1

< Ma (9., T) 3l g
Ell

and HJ2‘

;_I?maé(Np(tm)Ma (¢, T) I3l g -

Now let us estimate Jé(.

k —
H‘jé{ y (Rk—m+1 _ Rk—m) 1 ( Gn+1 2h<72n tqn-1 —(rq> ¢ (xs)
m=1 ds Eu,c
k _
< (Rk—m+1 _ Rk—m) 1 (aw ,Uq) o (xs)] -
m=1 ds h E,
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Since

l ()| < max 9 ()| = |9, < o]

Es
< x\—1 x h < x h
= H(Ah) ey |49 ‘E,; =M ‘ A gy (57)
and using (55), we get
151, < Mo (g, T) 3l || A%e" |, (58)

J‘f can be estimated as follows:

|

Ey

j j—1
Zk: Zk: (Rk7m+1 _ kam) 1 St = 2q2n +Gn-1 —oq wi — wi
=1 m=j as h

Eq
k j—1
< Z Z (Rk—m+1 _ kam) i (a dn+1 — 2f12n +qn-1 o'q) —wl .
j=1m=j ds h E; T
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Using equation (55), we get

L Wi K wl = wi™l
], < Ms (9o Ty 3l 1o | ™55 7 < Ms (po T 3l gy o max |2
j=1 j10ses
forany j,1<j<m<k.
Then, we have that
k h
~ '_1
], < Ms (9.2, T) 31l I (59)
« Jj=1 EL

Now, let estimate Jé(. By the definition of the norm of the spaces E, and equation (55), we get

|-

(60)

i (Rk—m+1 _ kam) £h (tm)

m=1

k=1l (E)

< o (0.7 | {7 (00},
Ey

Fatih University (Department of Mathematics) Parabolic Inverse Problem 09/03/2012 57 / 87



Let estimate Jé‘.
k
]

Applying the formula

ds

1 Gn+1 —2qn+q
( %—Wl) (P(fk)—Wsk)‘*‘fh(tk)

Ex '

Wi A
w Z T=g(x)+ ) & (61)
j=1 j=1
we obtain
1], < ialle { max 1o ()] + M | 4xe |+ {0}
g, = IE | 1EN o k=1 c. (e
(62)
Combining the estimates (46), (56), (58),(59), (60) and (62), we get
wh — wh
— S <m g Ty max, o (tn) Ms (9,0, T) |13l
k| wh—why
+Mo (¢.0, T) [3ll g 1A%l + M (9., T) allg Yo | ——"—|
Jj=1 174
+ (Mo (§r0,T) +1) H{fh (5}
F=tlene
k wh—wh,

3 t M ‘
+lallg | max, lo ()] + M

1 T
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or

h h
Wik — Wik

< (1- @+ Mo oo T [allg ) [ |

Asg"|

T E,

E;
+ max o (tn)| Ms (9.2, T) [[Ellg; + Mo (¢, T) [allg A5l

N
h = x oh
+ (Mo (¢,a, T) +1) H{f (fk)}k=1 CT(E;)HHHE,; (12?5)3\/ |P(fk)\+’V’11‘Ahq) ’E&)
h h
wi' —wl,

T

k—1
+ 3l (1+ Ms (9,0, 7)) X ||
j=1

j=

Eq
Using the discrete analogue of Gronwall's inequality and the last inequality, we get

h h
Wi = Wi—1

< eM(EpaT) [Mls G, ¢a, T) ‘

rd

=~ T
. } gt M3 (@ ¢,a, T) 0%l cpo, 7y,
o

+Mus (3,¢,2, T) H{fh (tk)}N

k=1

CT(Ea/t):|
for every k, 1 < k < N.
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Then, we have that

W/? - Wlf 1 ! h N
{ T } E;+H{f (tk)}kzl
k=1]|c,

The following theorem finishes the proof of Theorem 2.8.

Theorem 2.9. (Ashyralyev 2007) For 0 < a < } the norms of the spaces Ej (C[0, /], A¥) and
C2% 10, /], are equivalent.

Note that, in similar manner one can study the well-posedness of difference schemes for the
inverse problem of reconstructing the right side of a multidimensional parabolic equation (32).

<Mis5(3,¢.a,T) (HA;‘Ph)

+ |pTC[0,T]T> :
Ce(Ez)
(Ex)

o A. Ashyralyev, Fractional spaces generated by the positive differential and difference
operators in a Banach space, PISMME, Springer, 13-22, 2007.
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The discretization of problem (32) is carried out in two steps. In the first step, the grid space
R} (0 < h < hg) is defined as the set of all points of the Euclidean space R” whose coordinates
are given by

X, = sph, s, =0,+1,4+2,--- ,n=1,---,m.
The operator
BY=h"2" Y BIAT AP - ATIA
2m<|s|<S

acts on functions is defined on the entire space R}. Here s € R?" is a vector with nonnegative
integer coordinates,

A f(x) =+ (fh (x £ exh) — fh (x)) ,

where ey is the unit vector of the axis xj.
The function A* (¢h, h) is obtained by replacing the operator Ayt with the expression
+ (exp {£ig,h} — 1), and is called the symbol of the difference operator B}.
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It will be assumed that for |&,h| < 7t and fixed x the symbol AX (&h, h) of the operator
By = A} — ol satisfies the inequalities

(=1)" A* (2h, h) > M|E]*", [arg A* (&h, h)| < ¢ < g < 7

Suppose that the coefficient by of the operator By = A} — ol is bounded and satisfies the
inequality

BT _ x| < MhE, x € RY,

where € € (0,1] is a fixed point.
In the second step, problem (32) is replaced by the differences schemes

h h
up()=ul 4 (x) 9 S| AS2 S2n—1 AS2n ,,h h
%—h m y bXA _AH_-HAnf A7 uy (X)*Uuk(x)
2m<|s|<S

+pXg" (x) + FP (t,x) x ERE, pX =p(t), ty = k1,1 <k < N,NT=T, (63)

up =" (x), x €R},

() =p(t) 0=k <Ny =[]5|[neacry
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ol
To formulate our results, we introduce the Banach space C (R}), « € (0,1), of all bounded grid
functions ¢” (x) defined on R? equipped with the norm

h h
— X
= sup ‘(p (x)|+ sup 7}4) W) ¢D‘( )|
xERP x,yER} |y 7X|
x#y
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The following theorem on well-posedness of problem (63) exists.
Theorem 2.10.For the solution of problem (63), the following coercive stability estimates

uh — uh N N
ok v S N S TR,
= > n 2m<|s|<S o2
ket C,<c (mh)) m<Ts] s CT(qa(ﬂ{g))
N
te) — o (te—
< M(as) {P(k) TP(k 1)}
k=1llcpo,7],
M@ T) | |02 L aan amame|
2m<|s|<S z- (]Rﬂ)

e llco,r, |

H{r b,
I ((_9,,2“(]]12)>
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{P(tk)—p(fm)}'v

T k=1

HPTHC[O,T]T <M(q,s)

Cc[o,T],

MG g, T) [||A27" Y ATAR - APIA .
2m<|s|<S ¢ (]Rﬁ)

e llcp,r,

oy,
cT(E’hZ“(R;))

hold.
The proof of Theorem 2.10 follows the scheme of the proof of Theorem 2.7 and it is based on the

following theorems.
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Theorem 2.11. (Ashyralyev, Sobolevskii) For 0 < a < ﬁ and the indicator y € (0,1), the
norms of the spaces E, (C¥ (IR), A) and CH2m* (R?) are equivalent.
Theorem 2.12. (Ashyralyev, Sobolevskii) The solution of elliptic problem

h2m N BYAT AR, - APTIAR U (x) —ou (x) = ¢ (x), x € R}
2m<|s|<S

obey the coercivity inequality

s 55 g 40 1
2m<|s|<S * ! " C”(]RZ) C,A(IRZ)
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Second Order of Accuracy Difference Scheme

For the approximate solution of the problem (3), the Crank-Nicholson difference scheme

- k-1
uf—ufl _ a(xn) n+1_2“n+“n 14 upid—2uf " uf”
T 2 h? h?

R T
Pk:P(tk)uqn—Q(Xn) Xn = nh, t, = kT,
1<k<N1<n<M-1Mh=INt=T

(64)
ug = u;“,,, —3u6‘ +4u{‘ — u§ = uf“,,72 —4u,’(,,71 +3u;‘,,,0 < k<N,

=¢(xp), 0<n<M,

k ”§+1_”§ *
uf o+ Y (0 sh) = p (8), 0 < k< N0 <5 = |

wllhsm

is constructed. Here, gs,gs+1 # 0,90 = g and —3q0 +491 — 2 = qm—2 — 4qm—1 + 3qum are
assumed. Then, the following theorem on well-posedness of problem (64) is established.
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Theorem 3.1. For the solution of problem (64), the following coercive stability estimates

uh— b YV N

H{ k Tkl +H{D'27u£}k*1 L2\ SM(q.s)
o 2 =tle (¢

il (&) (&)

MG, ¢, T) HD,%qp"

{P(fk)*P(fk—l)}N

T k=1

clo, 71,

N
oo+ |4 F (2 N :
et {rr ol (6 e,

h

6%y, < M (a.5)

{P(fk)*P(fkfl)}N

T k=1

o, 71,

MG, ¢, T) HD,%q;h

N
s+ |3 F(E o "
&l H{ ( k)}k=l CT(COhZ ) oMo, 1,

hold. Here, £ (t) = {f (tx — L,x2) }1 1, 9" = {@ (xa) M5 and p7 = {p (t)}1y -
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Numerical Results

The parabolic equation with nonlocal conditions

We have not been able to obtain a sharp estimate for the constants figuring in the stability
inequalities. So, we will provide the following results of numerical experiments of the following
problem
9%u(t,x)

2

dultx) — TV (£,x) + p () cos (2x) + F (£,x),

f(t,x)=(4e"t —t> —1)cos(2x), x € (0,7), t €(0,1],
u(0,x) = cos (2x), x € [0, 7], (65)

u(t,0) = u(t, ), ux(t,0) = ux(t, ), te€[0,1],

u(t, 1) =cos(3)e .

The exact solution of the given problem is u (t,x) = e~!cos (2x) and for the control parameter
p(t)is 1+t2
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Numerical Results

Difference schemes

The first order of accuracy difference scheme
For the approximate solution of the problem (65), applying the Rothe difference scheme (33), we

get

is constructed.

- k Ky ok
uf—uf™t “n+1—2“2n+“n71

T 7 —U,‘7(+qun+f(tkyxn)v

f (tkoxn) = (e % —t2 — 1) cos 2x,,

p* = p(ti), qn = cos (2xn) , xp = nh, t, = kT,
1<k<N,1<n<M-1,Mh=mn,Nt=T,

. (66)
ud =cos(2x,), 0<n<M,

ug = ”km —3u(’)‘ —|—4u{‘ — ué‘ = ”’R4—2 —4u,’\‘4_1 +3u,’\‘/,,0 <k<N,

uf =p(ti),p(ty) =cos(3)e ™, 0< k< N,s=|%]
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The value of p (t4) at the grid points can be obtained from the equation (38)

k_ 1 pti) —p(te1)  wé—wi!
P = s (2xs) ( T T Sk, (67)

where w/,r = k, k — 1 is the solution of the difference scheme

Kowkl _ wha 2wl p(ty) —wh cos(2x,11)—2cos(2xn)+c0s(2xy 1)
= u

wn - W" ~
T cos(2xs) h2

_wk
_PC(SI;()2X:’)5 cos (2Xﬂ) - Wr’f + f(thxn) ,Xn = nh, t, = kT,
1<k<N1<n<M-1,Mh=INt=T, (68)

wh = wh, —3wE +awf —wk =3wf, L, —Awf, | +wl,0< k<N,

W,? =cos(2x,), 0<n< M.
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The difference scheme (68) can be arranged as

(— &) wh+ (2+ 2 1) wh+ (=) whoy+ (1) wh?

+ €05 (2xp+1)—2c0s(2xp) +cos(2x5-1) _ cos(2xp) k
cos(2xs) h? cos(2xs) s
2xp41)—2cos(2xp 2Xp
= C:;((tgkx)s) sl ) cos,;,(z o) tcos(2) cci(ékx)s) cos (2xp) + f (tk, Xn),

o (tx) = cos(L)e ™, f (ty,xn) = (4™ — t2 — 1) cos 2x,,
Xp=nh, txy =k, 1< k<N, 1<n<M-1,Mh=I,Nt=T,

wé‘ = w,’{,,,—3wé‘ +4w1k — W2k = W;\(472 —4W/l\(,,71 +3W,\’j,,0 < k<N,

wd =cos(x;), 0<n< M.

First, applying the first order of accuracy difference scheme (68), we obtain (M +1) x (M +1)
system of linear equations and we write them in the matrix form

AWk + Bw 1 = D¢k, 1<k <N, w® = {cos2x,}M, (69)

Fatih University (Department of Mathematics) Parabolic Inverse Problem 09/03/2012 72 /87



where

1 0 0 0 0 0 0o -1
X y X 0 71 0 0 0
A= 0 X y z 0 0 0
0 0 0 0 z,,-_l x y X
-3 4 -1 0 0 -1 4 3 (M+1)x (M+1)
0 0 O 0 0 O
0 v 0 0 0 O
B— 0 0 v 0 0 O
0 0 O 0 v 0
000 0 0 0 Jdiyinxmen
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Here,

112
TRy T TR T
€os (2xc41) — 2cos (2xc) +cos (2xc—1)  cos(2xc) . th
= - , 1 lumn,
% cos (2xs) h? cos (2xs) in (s +1)" column
we
wh= | : forr = k+1,k,
Wiy (M+1)x1
0
o1
k=1 ,
Phr-1
0 (M+1)x1
t, cos (2x —2cos (2x,) + cos (2xp— t
= Ll con(an) Z2eor(a) beor ) ) s 00 4 1)

cos (2xs)
and D is (M +1) x (M +1) identity matrix.
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Using (69), we can obtain that

wh= A1 (Dgk = Bwh 1), k=12, N, w® = {cos2x,} L. (70)
Then, we can reach to the solution of w/,0 < k <N, 0 < n < M. Applying the first order of
accuracy difference scheme (66) and (67), we have again (M + 1) x (M + 1) system of linear

equations and we write them in the matrix form where

Ak + Bou* L = Do, 1<k <N, u® = {cos2x, } M

where
1 0 0 0 0 0 -1
X y X 0 0 0 0
Ay = 0 X y X 0 0 0 '
0 0 0 0 X y X
-3 4 -1 0 -1 4 3

(M+1)x(M+1)
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0 0 0 0 O
0 v O 0 0 O
B, = 0 0 v 0 0 O
0 0 O 0 v 0
0 0 0 0 0 0 (M+41)x(M+1)
Here,
112
TR YT IR R o
ug
ut = forr=k+1,k,
Um d(mt1)x1
0
1
k=1 ,
Pl
0 (M+1)x1

¢k = PXan + f (k. xn) -

To solve the resulting difference equations, we again apply the iterative method given in (70).
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The second order of accuracy difference scheme
For the approximate solution of the problem (65), applying the Crank-Nicholson difference
scheme (33), we get

uk Tl ouk—lq kol ko k=1 ko k-1
n—1 + Ynt1 ;hz U1 _ un+;n + 2 +£’

uk—uk"l _u +172u,,+u
2h2

qn
+f (t - %,x,,) T (teoxn) = (e — tf — 1) cos 2x,,

= p(tk),qn = cos (2xp) , xn = nh, ty = kT,
1<k<N,1<n<M-1,Mh=rmNt=T,

ud =cos(2x,), 0<n< M,

u(’)‘ = u,’\‘”,—3u6‘+4uf — ué‘ = u,’\‘472 —4u;\‘,,71 +3u’,(,,,0 < k<N,

uk 4 el —ut (x* —sh) =p(tx),p(tx) =cos(3)e ™, 0 < k < N,s = | %]

is constructed.
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The value of p (tx) at the grid points can be obtained from the equation (38)

elt)—p(te—1) (1—y)% *st( v y whi —wh
p = T T 1<k<N,
(1-y)as +yqs+1
where y = X*gs” and w/,r = k, k — 1 is the solution of the difference scheme

wi—wit W1 — 2wy + wi i Wf:—:ll —2w T ]

‘ 2h2 k k 2h? k—1 k—1
+q,,+172q,2,+q,,71 P (tk) B (1 - y) Ws — YWsi1 p (tkfl) B (1 _y) Ws — YW

2h (1=y)qs +ygs+1 (1-y)qs +yqs+1

g (P(8) — (L —y)wE —ywk, L) = —y) wET —ywl T\ g
2 (1—y)ds +yast1 (1—y)ds +yast1 2

+f(tk— 5. %n) X =nh, tx =kT,1 <k <N, 1<n<M-1,Mh=INT=T,

Wé‘ = WI‘\(A,73W(;( +4W1k — W2k = 3W;\(A_2 74W/\</,_1 +W,\k/,,0 < k<N,

wl = cos (2x,), 0 < n < M.
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The difference scheme (71) can be arranged as

+

(aie) wha (24 3+ 3) i

9nt1=24n+qn-1)(1—y)

(ol wid+ (-t b+ 3w+ (-

k—1
2n2 ) Wp—1

+ ( 2h2) Wiy

(9nt1=29n+qn-1)y

qdny

+("

2h2((1-y)qs+yds+1)

9nt1—2dn+qn-1)(1—y)

gn(1—y) )

2((1-y)as+yas+1)

an(1-y)

k
s + ( 2h2((1-y)qs+ydss1)

(4nt1—=24n+qn-1)y

)wi
2((1=y)gs+yas1) ) s+

+(t

(9n+1—29n+49n-1) _qn
(941290 +9p-1)

2h%((1-y)qs+yds+1)

— 2h 2
((1-y)as+ygs+1)

p (t) = cos(3)e ", f (tx, x) =

Kk — ok
Wo = Wy

wd =cos(x,), 0<n< M.

First, applying the first order of accuracy difference scheme (68), we obtain (M + 1)

3w HAwf —wk = w

k-1
2(1-y) s+yqs+1)) + <2h2((1*}/)QS+,Vq5+1)

(o (te) + 0 (tk-1)) +F (tk = 5, xa)
(47t — 2 — 1) cos 2xy,
Xp =nh, txy = k71,1 < k<N, 1<n<M-1,Mh=I,Nt=T,

K, —Awly 43w, 0 < k<N,

system of linear equations and we write them in the matrix form

Awk + Bwk—1
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where

1 0 0 0 0 0 . 0 0 -1
a b a 71 7 . 0 0 0
A— 0 a y 2z ]2 . 0 0 0 '
0 0 0 0 Zn-1  Jn—-1 - a b a
-3 4 -1 0 0 0 -1 4 3 (M4+1)x(M+1)
o 0 0 . 0 0 .. 0 0 O
a . 71 N .. 0 0 O
B = 0 a ¢ . 2z J2 .. 0 0 O
0 0 0 . zy-1 Jjp-1 . a c a
0o 0 0 . 0 0 .. 0 0 O (M+1)x (M-+1)
Here,
S SRS S SO SO S R
T T P T TR T T T TR Ty
(gn+1—=2gn +qn-1) (1 —y) g (l-y) ) . th
Zy = ,in (s+1 column,
! ( 2h? (1 = y) qs + yqs+1) 2((1-y)4qs +yqs+1) (s+1)
. (gn11 —2qn+qa-1)y dny ) . th
Jjn = ,in (s+2 column,
= (o o S ey ) 6+
wg
wh = : forr = k+1,k,

r
W A (Mt1)x1
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Using the iterative method given in (70), we can reach to the solution of

w,‘,‘,O <k <N, 0<n< M. Applying the second order of accuracy difference scheme (66) and
(67), we have again (M +1) x (M + 1) system of linear equations and we write them in the
matrix form where

Aguk + Byt "t = Do, 1<k <N, u® = {cos2x, 11,

where
1 0 0 0 0 0o -1
a b a 0 0 0 0
Ay — 0 a b a 0 0 0 ’
0 0 0 0o . a b a
-3 4 -1 0 -1 4 -3 (M+1)x(M+1)
o 0 0 . 0 0 O
a ¢ a 0 0 O
B, — 0 a ¢ 0 0 O
0O 0 0 . a c a
0 0 0 -0 0 (M+1)x(M+1)
Here,
LS S TS S N S
22 T T T 2 T 2'T T 1 h2 2
ug
u" = : forr = k+1,k,
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Error analysis
Table 1 gives the error analysis between the exact solution of p (t) and the solutions derived by

the numerical process. The error is computed by the following formula.
E, = ty) — .
p = max [p(t) = Pl
Table 1. Error analysis for p (t).
N=30 N=60 N=90
Max. Error  0.3201 0.1451 0.0810

Table 2 gives the error analysis between the exact solution and the solutions derived by difference
schemes. Table 2 is constructed for N = M = 30, 60 and 90 respectively. For their comparison,

the errors are computed by

— Lk
E=  max u(te, xn) — up| .

1<n<M
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Table 2. Error analysis for the exact solution u (t, x) .
Method N=M=30 N=M=60 N=M=90
15t order of accuracy 0.0628 0.0345 0.0214
2" order of accuracy  1.3240x10~*  4.2111x10~° 1.2088x10~°

For finding of the control parameter p (t), we use u (t,x*) = 7 (t) for t =0, values of its first

and second derivatives and smoothness of < (t) in t. Therefore, we will consider the error

between "/(tk) and u‘{x* . Table 3 gives the maximum error for h = % and N = M = 30, 60
+)

and 90 respectively.

Table 3. Error analysis between <y (tx) and ukX*
h
Method N=M=30 N=M=60 N=M=90
15 order of accuracy 0.0354 0.0179 0.0116

2" order of accuracy  4.2321x107%  1.1632x107°  3.1262.107°

Thus, the second order of accuracy difference scheme is more accurate comparing with the first
order of accuracy difference scheme.
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Conclusion

This work is devoted to the study of the well-posedness of the right-hand side identification
problem for a parabolic equation. The following original results are obtained:

o 2w
o The well-posedness in C ([0, T],C [0,/] | of the inverse problem of reconstructing the

right side of a parabolic equation with nonlocal conditions

u X 2ll X
W) — a(0) T2 — gu (t,x) +p (1) @ (x) + F (£,%),
0<x<I,0<t<T,

u(t,0)=u(t, /), ux(t,0) =ux(t,/),0<t<T, (72)

u(0,x)=¢(x), 0<x<|,

u(t,x*)=p(t), 0<x*<1,0<t<T

is established.
o Theorem on the well-posedness in C ([0, T], C2™* (R")) of the inverse problem of
reconstructing the right side of a multidimensional parabolic equation
du(t,x) alrlu(t, x)
— = —— —oul(t, t
ot |r|=22maf(x)axlfl,..ax£n UU( X)-l—p( )q(X)
+f(t,x), x ER"0<t<T,|rl=n+n+-+r, 73)
73

u(0,x) = ¢(x),x € R",

u(t,x)=p(t),0<t<T, x*eQCR"

Fatih University (Department of Mathematics) Parabolic Inverse Problem 09/03/2012 84 /87



o For the approximate solution of the problem (72) the Rothe difference scheme

Kok yk
= a(x,,) Ini hu2n+un71 - (Tuﬁ + qun +f (fkan) ,

P* =p(tk).qn = q (xn) , xo = nh, ty = kT,
1<k<N,1<n<M-1,Mh=I,Nt=T,
ué‘ :uﬁﬂ,—3u5+4uf—u§ :u;\‘/,_Q—4u’,§/,_1+3u,’f,,,0 <k<N, (74)

W =9 (), 0<n< M,

x*

uk
(I
is presented. The coercive stability estimates for the problem (74) are established.
o The well-posedness of difference scheme

]:usk:p(tk),ogng,ogng

h _,h

SO _pam At AR AT AT (X) — oul (X)
2m<|s|<S

+pXg" (x) + FP (te,x) x ERE P =p(t) ty = k7,1 <k < N,NT=T,

ud = ¢" (x), x €RY,

X*
A

”k(Y):P(tk)rOSkSN,y:[

]heQC]Rg

for the inverse problem of reconstructing the right side of a multidimensional parabolic
equation (73) is presented.

Fatih University (Department of Mathematics) Parabolic Inverse Problem



o The Crank-Nicholson difference scheme

uk—ukl  a(xg) 1 —2ukuk ) L T1-2uf ks
T - 2 h2 h2
k -1
u +u +

,0—% + p_tp P qn + f (tk ) ,

pk:p(tk),qn—q(xn),xn—nh, b = kT,
1<k<N1<n<M-1,Mh=INt=T,
(75)

ué‘ = u;\‘,,, —3ué‘ +4u{‘ — ué‘ = u’,(,,72 —4u’,{,,71 +3uf\‘,,,0 < k<N,

ugztp(x,,), 0<n<M,

*]SM

X
h

k “§+1_”§ *
uk gt fsh):p(tk),ngSN,Ogs:[

is constructed. For the solution of problem (75), coercive stability estimates are obtained.
o The theoretical statements for the solution of this difference schemes are supported by the

results of numerical experiments.
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Thank you for your attention
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