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Air Pollution
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Optimal Control Problem

Ω ∈ Rd(d = 2,3) with Γ = ∂Ω is bounded, open, and convex
The linear-quadratic optimal control problem

minimize J(y,u) :=
1
2

∫
Ω

(y(x)− yd(x))2dx+
ω

2

∫
Ω

u(x)2dx

subject to

−ε∆y(x)+β (x) ·∇y(x)+ r(x)y(x) = f (x)+u(x), x ∈Ω,

y(x) = gD(x), x ∈ Γ,

source function f ∈ L2(Ω), desired state yd ∈ L2(Ω),
convection term β (x), reaction term r(x), diffusion term
0 < ε � 1 and the regularization parameter 0 < ω ≤ 1

y : the state and u : the control
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Weak formulation

State space Y = {y ∈ H1(Ω) : y = gD on Γ},
Control space U = L2(Ω),

Space of the test functions V = {υ ∈ H1(Ω) : υ = 0 on Γ}

Weak form of the state equation
a(y,υ)+b(u,υ) = (f ,υ), ∀υ ∈ V,

a(y,υ) =
∫

Ω

(ε∇y ·∇υ +β ·∇yυ + ryυ) dx,

b(u,υ) = −
∫

Ω

uυ dx, (f ,υ) =
∫

Ω

f υ dx.
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Optimality Conditions

Optimal control problem in variational form:

minimize J(y,u) :=
1
2
‖y− yd‖2

Ω +
ω

2
‖u‖2

Ω

s.t. a(y,υ)+b(u,υ) = (f ,υ), ∀(y,u,υ) ∈ Y×U×V.

Lagrangian

L(y,u,p)=
1
2
‖y−yd‖2

L2(Ω)+
ω

2
‖u‖2

L2(Ω)+a(y,p)+b(u,p)−(f ,p).

First order optimality conditions: ∇L(y,u,p) = 0

a(ψ,p) = −(y− yd,ψ), ∀ψ ∈ V,

b(w,p)+ω(u,w) = 0, ∀w ∈ U,

a(y,υ)+b(u,υ) = (f ,υ), ∀υ ∈ V.
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Optimality Conditions ...

a(ψ,p) = −(y− yd,ψ), ∀ψ ∈ V,

b(w,p)+ω(u,w) = 0, ∀w ∈ U,

a(y,υ)+b(u,υ) = (f ,υ), ∀υ ∈ V.

adjoint equation

−ε∇p(x)−β (x) ·∇p(x)+(r(x)−∇ ·β (x))p(x) = −(y(x)− yd(x)),

p(x) = 0,

gradient equation
p(x) = ωu(x).

state equation

−ε∆y(x)+β (x) ·∇y(x)+ r(x)y(x) = f (x)+u(x),

y(x) = gD(x),
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Existence & uniqueness

Assumptions:

f ,yD ∈ L2(Ω),gD ∈ H3/2(Γ),

0 < ε,β (x) ∈W1,∞(Ω)2,0 < ω and r ∈ L∞(Ω),

r(x)− 1
2 ∇ ·β (x)≥ r0 ≥ 0,

||−∇ ·β (x)+ r(x)||L∞(Ω) ≤ c∗r0.
(y,u) ∈ Y×U solve the optimal control problem if and only if
(y,u,p) ∈ Y×U×Y is unique solution for the following optimality
system [Lions, Tröltzsch]:

a(ψ,p)+(y,ψ) = (yd,ψ), ∀ψ ∈ Y,

b(w,p)+ω(u,w) = 0, ∀w ∈ U,

a(y,υ)+b(u,υ) = (f ,υ), ∀υ ∈ Y.
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Solution of the Optimal Control Problem

Discretize then optimize,

Optimize then discretize.

optimality
conditions

?

optimize

minJ(y,u)

s.t. c(y,u) = 0

apply
discretization

-discretize

-discretize discretized
optimal problem

?optimize

compute

optimality conditions
? ?

6 6

Commutative ?

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012 13



Solution of the Optimal Control Problem

Discretize then optimize,

Optimize then discretize.

optimality
conditions

?

optimize

minJ(y,u)

s.t. c(y,u) = 0

apply
discretization

-discretize

-discretize discretized
optimal problem

?optimize

compute

optimality conditions
? ?

6 6

Commutative ?

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012 13



Solution of the Optimal Control Problem

Discretize then optimize,

Optimize then discretize.

optimality
conditions

?

optimize

minJ(y,u)

s.t. c(y,u) = 0

apply
discretization

-discretize

-discretize discretized
optimal problem

?optimize

compute

optimality conditions
? ?

6 6

Commutative ?

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012 13



Solution of the Optimal Control Problem

Discretize then optimize,

Optimize then discretize.

optimality
conditions

?

optimize

minJ(y,u)

s.t. c(y,u) = 0

apply
discretization

-discretize

-discretize discretized
optimal problem

?optimize

compute

optimality conditions
? ?

6 6

Commutative ?

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012 13



Solution of the Optimal Control Problem

Discretize then optimize,

Optimize then discretize.

optimality
conditions

?

optimize

minJ(y,u)

s.t. c(y,u) = 0

apply
discretization

-discretize

-discretize discretized
optimal problem

?optimize

compute

optimality conditions
? ?

6 6

Commutative ?

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012 13



Numerical Methods

Complex Higher-order accuracy Local mass
geometries and hp-adaptivity Conservation

FDM × X X

FVM X × X

FEM X X ×
DG X X X

Locally-higher order/flexible element as in FEM

Local preservation of mass, energy as in FVM

Discontinuous Galerkin Finite Element Method
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Discontinuous Galerkin Methods

DG is a class of FEMs which use discontinuous functions as
the solution (and the test functions)

Pros:
Flexibility for approximation order and complex meshes
Local conservation of physical quantities such as mass,
momentum, and energy
Increase of the robustness and accuracy
Facilitation of parallelization

Cons:
Large number of degrees of freedom
Ill-conditioning and denser global matrix with increasing
approximation order
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DG Discretization

ξh: partition of a domain with the conformity and shape
regularity
Γh: set of all edges and the interior edges and boundary
edges are denoted by Γ0

h and Γ∂
h , respectively

An element and an edge are denoted by E and e,
respectively
|E|: the area of triangle E and |e| denote the length of edge
e
The boundary edges are decomposed into the inflow and
outflow edges;

Γ
−
h = {x ∈ ∂Ω : β (x) ·n < 0},

Γ
+
h = {x ∈ ∂Ω : β (x) ·n≥ 0}.
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|E|: the area of triangle E and |e| denote the length of edge
e
The boundary edges are decomposed into the inflow and
outflow edges;

Γ
−
h = {x ∈ ∂Ω : β (x) ·n < 0},

Γ
+
h = {x ∈ ∂Ω : β (x) ·n≥ 0}.
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DG Discretization in 1 dimension

a = x1 xk−1 xk xN = b

IkIk−1 Ik+1

(continuous) FEM : υ(x) =
Nnodes

∑
i=1

υiϕi(x)

DGFEM : υ(x) =
Nel

∑
m=1

Nloc

∑
j=1

υm
j ϕ

j
m(x)

Nnodes: number of nodes
Nel : number of elements
Nloc =

(k+1)(k+2)
2 local dimension with approximation order k

The jump operator [υ ]xk = υ |Ik(xk)−υIk+1(xk)

The average operator {υ}xk =
1
2(υIk(xk)+υIk+1(xk))
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DG Discretization in 2 dimensions

�
�
�
��

@
@
@
@@

@
@
@

@@

�
�
�

��

E1 E2

e

-
nE

vThe diffusion term is discretized by usingu the jump operator [υ ] = (υ |Ee
1
−υ |Ee

2
)u the average operator {υ}= 1

2(υ |Ee
1
+υ |Ee

2
)

The convection term is discretized by upwind discretization

y+ =

{
y|E1 , if β ·ne < 0,
y|E2 , if β ·ne ≥ 0,

y− =

{
y|E2 , if β ·ne < 0,
y|E1 , if β ·ne ≥ 0.
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Discretize then Optimize

DGFEM spaces on ξh

Vh = Yh = {yh ∈ L2(Ω) | y|E ∈ Pn(E), ∀E ∈ ξh},
Uh = {uh ∈ L2(Ω) | u|E ∈ Pm(E), ∀E ∈ ξh}.

Lagrangian of the discretized optimal control problem:

Lh(yh,uh,ph)=
1
2 ∑

E∈ξh

‖yh−yd‖2
E+

ω

2 ∑
E∈ξh

‖uh‖2
E+as

h(yh,ph)+bh(uh,ph)−lsh(ph),

Optimality system of the discretized optimal control problem:
discretized state equation

as
h(yh,υh)+bh(uh,υh) = lsh(υh), ∀υh ∈ Vh

discrete adjoint equation
as

h(ψh,ph) =−(yh− yd,ψh), ∀ψh ∈ Vh

discrete gradient equation
bh(wh,ph)+ω(uh,wh) = 0, ∀wh ∈ Uh
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Interior Penalty Galerkin Methods

as
h(yh,υh) = ∑

E∈ξh

(ε∇yh,∇υh)E

+ κ ∑
e∈Γh

({ε∇υh ·ne}, [yh])e− ∑
e∈Γh

({ε∇yh ·ne}, [υh])e

+ ∑
e∈Γh

σε

hβ0
e
([yh], [υh])e + ∑

E∈ξh

(β ·∇yh + ryh,υh)E

+ ∑
e∈Γ0

h

(y+h − y−h , |n ·β |υ
+
h )e + ∑

e∈Γ
−
h

(y+h ,υ
+
h |n ·β |)e,

with σ penalty parameter and β0 superpenalization parameter.

if κ =−1, SIPG, i.e., symmetric interior penalty Galerkin,
if κ = 1, NIPG, i.e., nonsymmetric interior penalty Galerkin,
if κ = 0, IIPG, i.e., incomplete interior penalty Galerkin.
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Discretize-Optimize System

bh(uh,υh) =− ∑
E∈ξh

(uh,υh)E

and the linear right-hand side

lsh(υh) = ∑
E∈ξh

(f ,υh)E + ∑
e∈Γ∂

h

σε

hβ0
e
(gD, [υh])e

+ κ ∑
e∈Γ∂

h

(εgD,{∇υh ·ne})e + ∑
e∈Γ

−
h

(gD,υ
+
h |n ·β |)e.
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Optimize-Discretize

The discretized state, adjoint and gradient equations:

as
h(yh,υh)+bh(uh,υh) = lsh(υh), ∀vh ∈ Yh,

aa
h(ph,ψh)+(yh,ψh) = (yd,ψh), ∀ψh ∈ Λh,

bh(wh,ph)+ω(uh,wh) = 0, ∀wh ∈ Uh,

where

aa
h(ph,ψh) = ∑

E∈ξh

(ε∇ph,∇ψh)E

+ κ ∑
e∈Γh

({ε∇ψh ·ne}, [ph])e− ∑
e∈Γh

({ε∇ph ·ne}, [ψh])e

+ ∑
e∈Γh

σε

hβ0
e
([ph], [ψh])e + ∑

E∈ξh

(−β ·∇ph +(r−∇ ·β )ph,ψh)E

+ ∑
e∈Γ0

h

(p+h −p−h , |n ·β |ψ
+
h )e + ∑

e∈Γ
+
h

(p+h ,ψ
+
h |n ·β |)e.
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h(yh,υh)+bh(uh,υh) = lsh(υh), ∀vh ∈ Yh,

aa
h(ph,ψh)+(yh,ψh) = (yd,ψh), ∀ψh ∈ Λh,

bh(wh,ph)+ω(uh,wh) = 0, ∀wh ∈ Uh,

where

aa
h(ph,ψh) = ∑

E∈ξh

(ε∇ph,∇ψh)E

+ κ ∑
e∈Γh

({ε∇ψh ·ne}, [ph])e− ∑
e∈Γh

({ε∇ph ·ne}, [ψh])e

+ ∑
e∈Γh

σε

hβ0
e
([ph], [ψh])e + ∑

E∈ξh

(−β ·∇ph +(r−∇ ·β )ph,ψh)E

+ ∑
e∈Γ0

h

(p+h −p−h , |n ·β |ψ
+
h )e + ∑

e∈Γ
+
h

(p+h ,ψ
+
h |n ·β |)e.
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DO versus OD

Discretize-then-Optimize M 0 AT
s

0 ωQ BT

As B 0

  ~y
~u
~p

 =

 ~b
0
~f

 .

Optimize-then-Discretize M 0 Aa

0 ωQ B
As B 0

  ~y
~u
~p

 =

 ~b
0
~f

 .
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Main Result

Theorem
The discretize-then-optimize and the optimize-then-discretize
lead the same scheme for symmetric DG methods, i.e., SIPG,
but not for nonsymmetric DG methods, i.e., NIPG, IIPG.

optimality
conditions

?

optimize

minJ(y,u)

s.t. c(y,u) = 0

apply
discretization

-discretize

-discretize discretized
optimal problem

?optimize

compute

optimality conditions
? ?

6 6

Same: SIPG
Different: NIPG, IIPG
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Comparison of DO and OD with Boundary Layer

Example

[Collis, Heinkenschloss, 2002] Let
Ω = [0,1]2,ε = 10−2,θ = 45o,β = (cosθ ,sinθ),r = 0 and ω = 1.
The exact solutions:

yex(x1,x2) = η(x1)η(x2), pex(x1,x2) = µ(x1)µ(x2),

where
η(z) = z− exp((z−1)/ε)− exp(−1/ε)

1− exp(−1/ε)
,

µ(z) = 1− z− exp(−z/ε)− exp(−1/ε)

1− exp(−1/ε
.

For SIPG and IIPG, σ = 3k(k+1) ∀e ∈ Γ0
h and

σ = 6k(k+1) ∀e ∈ Γ∂
h

For NIPG, σ = 1,∀e ∈ Γh

NIPG with standart penalization denoted by NIPG1, i.e., β0 = 1

NIPG with superpenalization denoted by NIPG3, i.e., β0 = 3
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SIPG Method
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Figure: L2 error for SIPG with ε = 10−2.
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NIPG1-NIPG3 Methods
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Figure: L2 error for NIPG1 and NIPG3 with ε = 10−2:
discretize-then-optimize (upper), optimize-then-discretize (lower)
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Motivation

Convection dominate problems cause boundary and/or
interior layers

Need more elements to obtain more accurate solution

Instead of refine all region, place only more grid-points
where the solution is less regular,i.e., refine the
discretization near the layers
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A Priori Error Estimates

‖u−uh‖ ≤ CE(u,h)

Contains the unknown solution u
Insufficient since it provides information about the asymptotic
error behavior
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A Posteriori Error Estimates

It has the following form

‖u−uh‖ ≤ C E(uh,h,datah)︸ ︷︷ ︸
Error Indicator︸ ︷︷ ︸

Error Estimator

+‖data−datah‖︸ ︷︷ ︸
data oscillations

Extracted from the computed numerical solution and from
the given data of the problem

Global upper bounds are sufficient to obtain a numerical
solution with an accuracy a prescribed tolerance

Local lower bounds are necessary to ensure that the grid
is correctly refined
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Adaptive Strategy �
 �	Begin

?
Initialization:mesh, 0 < tol,θ

?
SOLVE

?
ESTIMATE: compute η

?�
 �	η < tol

?No

?

MARK: find subset ME

?

REFINE: refine triangles E ∈ME�
 �	End

-

Yes

�

SOLVE stands for solution of the optimal control problem
using DG discretization on ξh mesh
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Estimator

ESTIMATE: [Schötzau and Zhu, 2009]

η
y =

(
∑

E∈ξh

(ηy
E)

2

) 1
2

, η
p =

(
∑

E∈ξh

(ηp
E)

2

) 1
2

, η
u =

(
∑

E∈ξh

(ηu
E)

2

) 1
2

.

where
(ηy

E)
2 =

[
(ηy

ER
)2 +(ηy

eD
)2 +(ηy

eJ
)2] ,

(ηp
E)

2 =
[
(ηp

ER
)2 +(ηp

eD
)2 +(ηy

eJ
)2] ,

(ηu
E)

2 =
[
(ηu

ER
)2] .

ηE: the element residual

η
y
ER

= ρE‖fh +uh + ε∆yh−βh ·∇yh− rhyh‖L2(E), E ∈ ξh,

η
p
ER

= ρE‖− (yh− (yd)h + ε∆ph +βh ·∇ph− rhph‖L2(E), E ∈ ξh,

η
u
ER

= ‖ωuh−ph‖L2(E), E ∈ ξh.
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Edge part of Estimator

The edge residuals denoted by ηeD and ηeJ coming from the
jump in the numerical solutions

(ηy
eD
)2 =

1
2 ∑

Γ0
h

ε
− 1

2 ρe‖[ε∇yh]‖2
e ,

(ηy
eJ
)2 =

1
2 ∑

Γ0
h

(
σε

he
+ r0he +

he

ε
)‖[yh]‖2

e +∑
Γ∂

h

(
σε

he
+ r0he +

he

ε
)‖[gD− yh]‖2

e ,

(ηp
eD
)2 =

1
2 ∑

Γ0
h

ε
− 1

2 ρe‖[ε∇ph]‖2
e ,

(ηp
eJ
)2 =

1
2 ∑

Γ0
h

(
σε

he
+ r0he +

he

ε
)‖[ph]‖2

e +∑
Γ∂

h

(
σε

he
+ r0he +

he

ε
)‖[ph]‖2

e .

with
ρE = min{hEε

− 1
2 ,r−

1
2

0 }, ρe = min{heε
− 1

2 ,r−
1
2

0 }.
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Data Approximation Errors

Data approximation terms:

(θ y
E)

2 = ρ
2
E(‖f − fh‖2

L2(E)+‖(β −βh) ·∇yh‖2
L2(E)+‖(r− rh)yh‖2

L2(E)),

(θ p
E)

2 = ρ
2
E(‖(yd)h− yd‖2

L2(E)+‖(β −βh) ·∇ph‖2
L2(E)

+ ‖(r−∇ ·β )− (rh−∇ ·βh)ph‖2
L2(E)).

The data approximation errors:

θ
y =

(
∑

E∈ξh

(θ y
E)

2

) 1
2

, θ
p =

(
∑

E∈ξh

(θ p
E)

2

) 1
2

.
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Marking

Marking Strategy
For a given universal constant θ , we choose subsets
ME ⊂ ξh such that the following bulk criterion [Dörfler, 1996]
is satisfied:

∑
E∈ξh

(ηE)
2 ≤ θ ∑

E∈ME

(ηE)
2.
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Refinement

In Refinement step, the marked elements are refined by
longest edge bisection,
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A Posteriori Error Analysis

Energy Norm

‖|y‖|2 = ∑
E∈ξh

(‖ε∇y‖2
L2(E)+ r0‖y‖2

L2(E))+ ∑
e∈Γh

σε

he
‖[y]‖2

L2(e)

The semi-norm | · |A with convective term [Verfürth,2005]

|y|2A = |βy|2∗+ ∑
e∈Γ

(r0he +
he

ε
)‖[y]‖2

L2(e),

where for q ∈ L2(Ω)2,

|q|∗ = sup
υ∈H1

0(Ω)\{0}

∫
Ω

q ·∇υdx
‖|υ‖|

.

Assume that r0 > 0 and gD = 0.
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Reliability

Connection between the control and the adjoint
‖u−uh‖2

L2(Ω) > ‖ph−p[uh]‖2
L2(Ω)+(ηu)2,

where p[uh] satisfies the following equation:
a(y[uh],w)− (uh,w) = (f ,w), ∀w ∈ V,

a(w,p[uh])+(y[uh],w) = (yd,w), ∀w ∈ V.

Connection between the adjoint and the state It holds
‖|p[uh]−ph‖|+ |p[uh]−ph|A > η

p +θ
p +‖yh− y[uh]‖L2(Ω).
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Reliability

Upper bound for state

‖|y[uh]− yh|‖+ |y[uh]− yh|A > η
y +θ

y

Reliability of the estimator

‖u−uh‖L2(Ω)+‖|y− yh‖|+ |y− yh|A + ‖|p−ph‖|+ |p−ph|A
> η

u +η
y +θ

y +η
p +θ

p
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Efficiency

Bounds for the estimator of the state and the adjoint

η
y > ‖|y− yh‖|+ |y− yh|A +θ

y +‖u−uh‖L2(Ω)

η
p > ‖|p−ph‖|+ |p−ph|A +θ

p +‖y− yh‖L2(Ω)

hold.
Efficiency of the estimator

η
y +η

p +η
u > ‖u−uh‖L2(Ω)+‖|y− yh‖|+ |y− yh|A

+ ‖|p−ph‖|+ |p−ph|A +θ
y +θ

p.
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Boundary Layer

Example (Collis, Heinkenschloss, 2002)
Let
Ω = [0,1]2,ε = 10−3,θ = 45o,β = (cosθ ,sinθ),r = 0 and ω = 1.
The exact solutions:

yex(x1,x2) = η(x1)η(x2), pex(x1,x2) = µ(x1)µ(x2),

η(z) = z− exp((z−1)/ε)− exp(−1/ε)

1− exp(−1/ε)
,

µ(z) = 1− z− exp(−z/ε)− exp(−1/ε)

1− exp(−1/ε
.
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Uniform Refinement

Figure: Uniformly refined mesh (16641 nodes) for ε = 10−3.
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Adaptive Refinement

Figure: Adaptively refined mesh (15032 nodes) for ε = 10−3.
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Adaptive Mesh

[level,nodes]=[14,15032]
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Global Errors
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Figure: Errors in L2 norm using linear and quadratic elements for
ε = 10−3.
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Interior Layer

Example (Heinkenschloss and Leykekhman, 2008)

Ω = [0,1]2, ε = 10−7, β = (1,2), r = 0 and ω = 10−2.

Exact solution:

yex(x1,y1) = (1− x1)
3 arctan

(
x2−0.5

ε

)
,

pex(x1,x2) = x1(1− x1)x2(1− x2).
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Exact Solutions

Figure: Surfaces of the exact state (left) and the exact control (right)
for ε = 10−7.
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Errors

Figure: Error on uniformly refined mesh (16641 nodes) and
adaptively refined mesh (9252 nodes) using linear elements for
ε = 10−7: state (top row), control (bottom row).
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Adaptive Mesh

[level,nodes]=[14,9252] [level,nodes]=[20,1000]

Figure: Adaptively refined meshes with linear elements (left,9252
nodes) and quadratic elements (right, 1000 nodes) for ε = 10−7.
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Control Constrained Optimal Control Problem

min
u∈Uad⊂U

J(y,u) :=
1
2

∫
Ω

(y(x)− yd(x))2dx+
ω

2

∫
Ω

u(x)2dx

subject to

−ε∆y(x)+β (x) ·∇y(x)+ r(x)y(x) = f (x)+u(x), x ∈Ω,

y(x) = gD(x), x ∈ Γ,

where a closed convex set Uad ⊂ U = L2(Ω)

Uad = {u ∈ U : ua ≤ u≤ ub, a.e in Ω},

with constants ua,ub.
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Optimality Conditions

The Lagrange multipliers: λa,λb ∈ L2(Ω)

−ε∆y+β ·∇y+ ry = f +u, x ∈Ω,

y = gD, x ∈ Γ,

−ε∆p−β ·∇p+(r−∇ ·β )p = −(y− yd), x ∈Ω,

p = 0, x ∈ Γ,

ωu−p−λa +λb = 0, a.e in Ω,

λa ≥ 0, ua−u ≤ 0, λa(u−ua) = 0 a.e. in Ω,

λb ≥ 0, u−ub ≤ 0, λb(ub−u) = 0 a.e. in Ω.
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Primal Dual Active Set Strategy (PDAS) with
Semi-Smooth Newton Method

Solution operators S,S∗ and λ = λa−λb, the
complementary conditions [Bergounioux, Ito and Kunish,
1999]:

−S∗(Su− yd)+ωu+λ = 0,

λ −min{0,λ − c(ua−u)}−max{0,λ + c(u−ub)} = 0.

Taking c = ω,

F(u) :=−S∗(Su− yd)+ωu + min{0,S∗(Su− yd)−ωua}
+ max{0,S∗(Su− yd)−ωub}= 0.

The Newton derivative of F(u)

G(u) =−S∗S+ω +(χA−(u)+χA+(u))S
∗S =−χI(u)S

∗S+ω

χA(u) =

{
1, if x ∈ A(u)
0, otherwise.
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Optimality System

The active sets

A−(u) = {x ∈Ω : S∗(Su− yd)−ωua < 0},
A+(u) = {x ∈Ω : S∗(Su− yd)−ωub > 0},

The inactive set I(u) = Ω\(A+(u)∪A−(u)).

Newton’s method,

ωun+1−χInS∗(Sun+1− yd) = χA−n ωua +χA+
n

ωub.

DG discretized optimality system:

 M 0 Aa
0 ωQ diag(χI)B
As B 0

  ~y
~u
~p

 =

 ~b
ωQ(χA−ua +χA+ub)

~f

 .
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Full discretization and variational discretization

‖u−uh‖L2(Ω) = O(h3/2) by the fully discrete approaches

in [Becker and Vexler, 2007] with local projection based

stabilization

in [Yan and Zhou, 2009] with edge stabilization

‖u−uh‖L2(Ω) = O(h2) by variational discretization, i.e., the

control is not discretized, in [Hinze, Yan and Zhou, 2009]

‖u−uh‖L2(Ω) = O(h2) by the fully discrete approaches

using DG in [Yücel, Heinkenschloss and Karasözen, 2012]
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Numerical Results

Example (Hinze, Yan and Zhou, 2009)

Let
Ω = [0,1]2,ε = 10−3,β = (2,3)T and r = 2.

The admissible set Uad = {υ ∈ U : υ ≥ 0}. Exact state, adjoint and
controls

y(x1,x2) = 100(1− x1)
2x2

1x2(1−2x2)(1− x2),

p(x1,x2) = 50(1− x1)
2x2

1x2(1−2x2)(1− x2),

u(x1,x2) = max{0,− 1
ω

p(x1,x2)}.

Nodes ‖y− yh‖L2 order ‖p−ph‖L2 order ‖u−uh‖L2 order
25 4.68e-2 - 2.82e-2 - 1.70e-1 -
81 1.24e-2 1.92 6.10e-3 1.90 4.84e-2 1.82

289 3.10e-3 2.00 1.54e-3 1.99 1.20e-2 2.02
1089 7.62e-4 2.02 3.80e-4 2.02 2.86e-3 2.06
4225 1.87e-4 2.02 9.38e-5 2.02 6.92e-4 2.05

Table: Convergence results on uniform meshes.
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Circular and Straight Interior Layer Example

Example (Hinze, Yan and Zhou, 2009)

Ω = [0,1]2, β = (2,3)T , r = 1 and ω = 0.1.

Exact state

y(x1,x2) =
2
π

arctan
(

1√
ε

[
−1

2
x1 + x2−

1
4

])
,

Straight interior layer with the corresponding adjoint

p(x1,x2) = 16x1(1− x1)x2(1− x2)

×

(
1
2
+

1
π

arctan

[
2√
ε

(
1
16
−
(

x1−
1
2

)2

−
(

x2−
1
2

)2
)])

,

Circular interior layer. Optimal control

u(x1,x2) = max{−5,min{−1,− 1
ω

p(x1,x2)}}.
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Uniform Refinement

Figure: Uniform mesh (4225 nodes) for ε = 10−6.
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Adaptive Refinement

Figure: Adaptively refined mesh (4135 nodes) for ε = 10−6.
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Adaptive Mesh

[level,nodes]=[11,1204] [level,nodes]=[13,2271] [level,nodes]=[15,4135]

Figure: Adaptively refined meshes at various refinement levels for
ε = 10−6.
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Global Errors
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Figure: Errors in L2 norm for ε = 10−6.
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Example with Control desired

minimize
u∈Uad⊂U

J(y,u) :=
1
2

∫
Ω

(y(x)− yd(x))2dx+
ω

2

∫
Ω

(u(x)−ud(x))2dx

Example (Yan, Zhou, 2009)

Ω = [0,1]2, ε = 10−4, β = (1,0), r = 1 and ω = 1.

Exact solutions

y(x1,x2) = 4e(−((x1−1/2)2+3(x2−0.5)2)/
√

ε) sin(πx1)sin(πx2),

p(x1,x2) = e(−((x1−1/2)2+3(x2−0.5)2)/
√

ε) sin(πx1)sin(πx2),

u(x1,x2) = max{0,2cos(πx1)cos(πx2)−1}.
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Uniform Refinement

Figure: Uniform mesh (4225 nodes).
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Adaptive Refinement

Figure: Adaptively refined mesh (2867 nodes).
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Adaptive Mesh

[level,nodes]=[15,2867]

Figure: Adaptively mesh
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Global Errors
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Figure: L2 errors in the state, the adjoint and the control.
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Conclusions

State and adjoints are polluted with errors around the

boundary and interior layers using adaptive FEM with

SUPG stabilization.

For the adaptive SIPG method, meshes are only refined in

regions where states or adjoints exhibit layers.

Optimal convergence orders are obtained for the control

constrained problems.
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Future Work

Comparison of different error estimators and convergence

analysis

hp-adaptivity

Nonconforming meshes

Goal-oriented error estimates for optimal control problems

using DG discretization

Boundary control problems

Time dependent optimal control problems

Nonlinear problems
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THANK YOU !
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