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Air Pollution

‘What will be the maximum concentration

of the fumes as they pass myhouse?

Yhian

the plant emitting noxioss fomes My bt b

(a) stable (b) neutral (c) instable

Figure: Illustrative example of the effects of air stability on a pollutants plume emitted
by a chimney.

L. Dede’, and A. Quarteroni, Optimal control and numerical adaptivity for advection diffusion-equations, 2005.
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Water Pollution

Tempo : 299400 secondl

Tempo: 600 sccondi

Figure 1.10: Concentration of a pollutant released in front of the Venice Lagoon at two
different time steps.

A. Quarteroni, L. Bonaventura, L. Ded‘e, E. Miglio, A. Quaini, M. Restelli, G. Rozza, and F. Saleri, Modellistica

matematica in problemi ambientali , 2006.
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Cooling of Steel Profiles

Fig. 1 The domain Q is a half cross section of a rail profile. Different cost functionals (e.g. different output matrices)
produce different final temperatures according to experimental observation

J. Saak, and P. Benner, Efficient numerical solution of the LQR-problem for the heat equation, 2004.
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Optimal Control Problem

0 Q cRY(d=2,3) with T" = 9Q is bounded, open, and convex

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



Optimal Control Problem

0 Q cRY(d=2,3) with T" = 9Q is bounded, open, and convex
o The linear-quadratic optimal control problem

minimize J(y,u) : / x))2dx+ — /u(x)zdx
T2 2 Jo
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—eAy(x) + B(x) - Vy(x) +r(x)y(x) = f(x)+ulx), xecQ,
y(x) = gpx), xeT,
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Optimal Control Problem

0 Q cRY(d=2,3) with T" = 9Q is bounded, open, and convex
o The linear-quadratic optimal control problem

minimize J(y,u) : / x))2dx+ — /u(x)zdx
T2 2 Jo
subject to

—€Ay(x) +B(x) - Vy(x) +r(x)y(x) = f(x)+ulx), xe€Q,
y(x) = gpx), xeT,
@ source function f € L?(Q), desired state y, € L*(Q),

convection term B (x), reaction term r(x), diffusion term
0 < £ < 1 and the regularization parameter 0 < w < 1

o y: the state and u : the control
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Weak formulation

o State space Y ={yc H'(Q): y=gpon I'},
Weak form of the state equation
a(y,v)+b(u,v) = (f,v), Yvev,

a(y,v) = /gz(SVy-Vv+ﬁ-Vyv+ryv) dx,

b(u,v) = —/qudx, (f,v):/gfvdx.
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Weak formulation

o State space Y ={yc H'(Q): y=gpon I'},
o Control space U = L*(Q),
o Space of the test functions V={v € H'(Q): v=00n T}

Weak form of the state equation
a(y,v)+b(u,v)=(f,v), VveV,

a(y,v) = /gz(SVy-Vv+ﬁ-Vyv+ryv) dx,

b(u,v) = —/qudx, (f,v):/gfvdx.
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Optimality Conditions

o Optimal control problem in variational form:
T 1 P I
minimize J(y,u) := iﬂy—yd”gﬁ'EHuHQ

s.t. a(y,v)+b(u,v) = (f,v), Y(y,u,0) €Y xUx V.
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o Lagrangian

1 [0}
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Optimality Conditions
o Optimal control problem in variational form:
D 1 w
minimize J(y,u) := 3 [y = yalla + 7 |l

s.t. a(y,v)+b(u,v) = (f,v), Y(y,u,0) €Y xUx V.
o Lagrangian

1 [0}
L(y,u,p) = E”y—deiZ(Q) +EHMHIZ}(Q)+a(y7p)+b(u7p) - (fap)

o First order optimality conditions: VL(y,u,p) =0

a(l,"ap) = _(y_ydalII)? V‘I’EV7
b(w,p) + @(u,w) 0, Ywe U,
a(y,v)+b(u,v) = (f,v), Vv ev.
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Optimality Conditions ...

a(y.p) = —(v—ya¥), VYeV,
b(w,p)+w(u,w) = 0, Ywe U,
a(y,v)+bu,v) = (f,v), YveVv.

o adjoint equation
—eVp(x)=B(x) - Vp(x) + (r(x) = V-Bx))p(x) = —((x)—ya(x)),
plx) = 0,
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a(y.p) = —0—ya, V), Yy ev,
b(w,p)+w(u,w) = 0, Ywe U,
a(y,v)+bu,v) = (f,v), YveVv.

o adjoint equation
—eVp(x)—B(x) V() + (r(x0) = V- B)p() = —((®) —yalx)),
plx) = 0,
o gradient equation
p(x) = @u(x).

o state equation

—eAy(x) HB () Vy() + () = fx) +ul),
y(x) = gnx),
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Existence & uniqueness

Assumptions:
o fiyp € L*(Q),8p € HY(T),

(y,u) € Y x U solve the optimal control problem if and only if
(y,u,p) € Y x U x Y is unique solution for the following optimality
system [Lions, Tréltzsch]:

a(y,p)+»y) = Oay), YWEY,
b(w,p) + @(u,w) Ywe U,
aly,v)+b(u,v) = (f,v), Yo ey.

I
k=
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Solution of the Optimal Control Problem
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Solution of the Optimal Control Problem

o Discretize then optimize,

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



Solution of the Optimal Control Problem

o Discretize then optimize,

o Optimize then discretize.

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



Solution of the Optimal Control Problem

o Discretize then optimize,

o Optimize then discretize.

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



Solution of the Optimal Control Problem

o Discretize then optimize,

o Optimize then discretize.

minJ (y, u) discretize | discretized
st c(y,u) =0 optimal problem
loptimize
compute
optimize optimality conditions
Y v
Commutative ?
t t
optimality discretize apply
conditions discretization
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Numerical Methods

Complex Higher-order accuracy Local mass

geometries and hp-adaptivity Conservation
FDM X v v
FVM v X v
FEM v v X
DG v v v
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Numerical Methods

Complex Higher-order accuracy Local mass

geometries and hp-adaptivity Conservation
FDM X v v
FVM v X v
FEM v v X
DG v v v

o Locally-higher order/flexible element as in FEM

o Local preservation of mass, energy as in FVM

Discontinuous Galerkin Finite Element Method
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Discontinuous Galerkin Methods

DG is a class of FEMs which use discontinuous functions as
the solution (and the test functions)
@ Pros:
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Discontinuous Galerkin Methods

DG is a class of FEMs which use discontinuous functions as
the solution (and the test functions)
@ Pros:
o Flexibility for approximation order and complex meshes
o Local conservation of physical quantities such as mass,

momentum, and energy
o Increase of the robustness and accuracy
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Discontinuous Galerkin Methods

DG is a class of FEMs which use discontinuous functions as
the solution (and the test functions)
@ Pros:

©
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momentum, and energy
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Discontinuous Galerkin Methods

DG is a class of FEMs which use discontinuous functions as
the solution (and the test functions)
@ Pros:

©

Flexibility for approximation order and complex meshes
Local conservation of physical quantities such as mass,
momentum, and energy

Increase of the robustness and accuracy

Facilitation of parallelization

©

©

©

o Cons:
o Large number of degrees of freedom
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Discontinuous Galerkin Methods

DG is a class of FEMs which use discontinuous functions as
the solution (and the test functions)
@ Pros:

©

Flexibility for approximation order and complex meshes
Local conservation of physical quantities such as mass,
momentum, and energy

Increase of the robustness and accuracy

Facilitation of parallelization

©

©

©

o Cons:
o Large number of degrees of freedom
o lll-conditioning and denser global matrix with increasing
approximation order
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Mesh

€s

€2

E,

e3
E

e4

€1
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DG Discretization

o &, partition of a domain with the conformity and shape
regularity
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o T',: set of all edges and the interior edges and boundary
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DG Discretization

o &,: partition of a domain with the conformity and shape
regularity

o T',: set of all edges and the interior edges and boundary
edges are denoted by I') and I'?, respectively

o An element and an edge are denoted by E and e,
respectively

o |E|: the area of triangle E and |e| denote the length of edge

e
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DG Discretization

o &,: partition of a domain with the conformity and shape
regularity

o T',: set of all edges and the interior edges and boundary
edges are denoted by I') and I'?, respectively

o An element and an edge are denoted by E and e,
respectively

o |E|: the area of triangle E and |e| denote the length of edge
e

o The boundary edges are decomposed into the inflow and
outflow edges;

I, = {x€dQ: B(x)-n<0},
Iy = {x€dQ: B(x)-n>0}.

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



DG Discretization in 1 dimension

li—1 Iy li s
| | | | | |
N N N N N N
a=x Xk—1 Xk xy=>b
Nnodev
(continuous) FEM : v(x)= Y vii(x)
Nell N}oc
DGFEM : v(x)= Y Y v @l (x)
m=1j=1

Nuodes: NUMber of nodes
N,; : number of elements
Nipe = W local dimension with approximation order k&
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DG Discretization in 1 dimension

li—1 Iy li s
| | | | | |
N N N N N N
a=x Xk—1 Xk xy=>b
Nnodev
(continuous) FEM : v(x)= Y vii(x)
Nell N}oc
DGFEM : v(x)= Y Y v @l (x)
m=1j=1

Nuodes: NUMber of nodes
N,; : number of elements
Nipe = W local dimension with approximation order k&

o The jump operator [v],, = V|, (xx) — vy, (xk)

o The average operator {v}y, = 3 (vy, (x¢) + vy, (k)
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DG Discretization in 2 dimensions

® The diffusion term is discretized by using
® the jump operator [v] = (V| — V[gg)
2 E> > e the average operator {v} = 1 (vg + v[x)

—

ng

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



DG Discretization in 2 dimensions

® The diffusion term is discretized by using
® the jump operator [v] = (V| — V[gg)
2 E> > e the average operator {v} = 1 (vg + v[x)

—

ng

@ The convection term is discretized by upwind discretization

+_ [ ylp, it B-n. <0, | Y, if Bon. <0,
Y T U Mg it Bone>0, g, if Bone>0.
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Discretize then Optimize

DGFEM spaces on &,
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Discretize then Optimize

DGFEM spaces on &,

° Vi=Y,={ym e L*(Q)| ylr € Pu(E), VE € &},

o Up={u,€*(Q)| ulg €Pu(E), VE € &,}.
Lagrangian of the discretized optimal control problem:

Lu(Yh,un, pn) = Z llvn—yallz+ Z [ un| 4@, (v, pi) +ba(en i) — B (p)
EGin EGéh
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Discretize then Optimize

DGFEM spaces on &,

0 Vi =Yy={y € L*(Q)| ylg € P.(E), VE € &},

o Up={u,€*(Q)| ulg €Pu(E), VE € &,}.
Lagrangian of the discretized optimal control problem:

Lu(Yh,un, pn) = Z llvn—yallz+ Z [ un| 4@, (v, pi) +ba(en i) — B (p)
EGin EGéh

Optimality system of the discretized optimal control problem:
o discretized state equation

a, (yn, V) + by (up, v) = L, (), Vo, €V,
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Discretize then Optimize

DGFEM spaces on &,

0 Vi =Yy={y € L*(Q)| ylg € P.(E), VE € &},

o Up={u,€*(Q)| ulg €Pu(E), VE € &,}.
Lagrangian of the discretized optimal control problem:

Lu(Yh,un, pn) = Z llvn—yallz+ Z [ un| 4@, (v, pi) +ba(en i) — B (p)
EGin EGéh

Optimality system of the discretized optimal control problem:
o discretized state equation

a; (Yn, On) + b (un, vn) = L, (0p), Vo, €Vy
o discrete adjoint equation
ay (Wh,pn) = —(Yn — Yd, Wh), Yy, € Vi
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Discretize then Optimize

DGFEM spaces on &,

0 Vi =Yy={y € L*(Q)| ylg € P.(E), VE € &},

o Up={u,€*(Q)| ulg €Pu(E), VE € &,}.
Lagrangian of the discretized optimal control problem:

Lu(Yh,un, pn) = Z llvn—yallz+ Z [ un| 4@, (v, pi) +ba(en i) — B (p)
EGin EGéh

Optimality system of the discretized optimal control problem:
o discretized state equation

ay,(n, On) +bu(un, 0p) = i(vp), VU EV)
o discrete adjoint equation

a, (Wi pn) = —(Vh = Ya> Vi) Yy € Vi,
o discrete gradient equation

bn(Wn;pn) + @ (up, wi) =0, VYwi € Uy
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Interior Penalty Galerkin Methods

ay(vm,on) = Y (eVyn, Vor)e
Eeg,
_|_
+
_|_

with o penalty parameter and 3y superpenalization parameter.

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



Interior Penalty Galerkin Methods
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) ’ !
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Interior Penalty Galerkin Methods
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Interior Penalty Galerkin Methods

aj(yn,on) = Y, (eVyn,Von)e

Ecé,

+ k), ({eVon-ned,al)e — Y ({Vyn-ne}, [va))e

eerh ecl’)y,

+ Z ([yh] [n])e + Z (B-Vyp+ryn, vn)E
ecl’, he E€&,

+ Z(yh _y];7|n |Uh + Z yh7 e
661—2 ecly

with o penalty parameter and 3y superpenalization parameter.
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Interior Penalty Galerkin Methods

ap(yn,on) = EZ (€Vyn, Von)e
+ Kezzrh<{erh ‘et [ynl)e — e§h({8Vyh Mo}, [On])e
+ ; O (bl [ e+EZé(ﬁ-Vyh+ryh,vh)E
+ Zh@e,i—yh,m‘mv,,elz 00 |- Bles
ecl? ecl;

with o penalty parameter and 3y superpenalization parameter.

o if k =—1, SIPG, i.e., symmetric interior penalty Galerkin,

D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic
problems, 2002.
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Interior Penalty Galerkin Methods

ay(vm,on) = Y (eVyn, Vor)e

Ecé,

+ kY ({eVop-ned,nl)e— Y, ({€Vyn-ne}, [va))e

eerh ecl’)y,

+ Z ([yh] [n])e + Z(ﬁ'VYh+7yhaUh)E
ecly, e E€&,

+ Z(yh —y;,|n‘ﬁ|1)h +Z yh7 ‘” Bl)es
661—2 ecly

with o penalty parameter and 3y superpenalization parameter.

o if k =—1, SIPG, i.e., symmetric interior penalty Galerkin,
o if k =1, NIPG, i.e., nonsymmetric interior penalty Galerkin,

D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic
problems, 2002.
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Interior Penalty Galerkin Methods

ay(vm,on) = Y (eVyn, Vor)e

Ecé,

+ kY ({eVop-ned,nl)e— Y, ({€Vyn-ne}, [va))e

eerh ecl’)y,

+ Z ([yh] [n])e + Z(ﬁ'VYh+7yhaUh)E
ecly, e E€&,

+ Z(yh —y;,|n‘ﬁ|1)h +Z yh7 ‘” Bl)es
661—2 ecly

with o penalty parameter and 3y superpenalization parameter.
o if k =—1, SIPG, i.e., symmetric interior penalty Galerkin,
o if k =1, NIPG, i.e., nonsymmetric interior penalty Galerkin,
o if k=0, IPG, i.e., incomplete interior penalty Galerkin.

D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic
problems, 2002.
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Discretize-Optimize System

o bp(up,op) =— Y, (up,0n)E
EcE,
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Discretize-Optimize System

o bp(up,op) =— Y, (up,0n)E
EcE,

o and the linear right-hand side

o) = Y (fon)e+ Z 68 gD, [Vn])e

E€, eEl"a
+ oK) (SgD,{VDh'ne} et ) (80,07 |n- Bl)e-
eEFz ecl’y,
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Optimize-Discretize

Istanbul Analysis Semin:



Optimize-Discretize

The discretized state, adjoint and gradient equations:

af,(yh,vh) —|—bh(uh, ‘l)h) = ZZ(U},), Vvh €Yy,
ay,(pr, W) + O, W) = (Va, W), Yy, € Ay,
bp(wh,pn) + @(up,wy) = 0, VYwy, € Up,
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Optimize-Discretize

The discretized state, adjoint and gradient equations:

af,(yh,vh) —|—bh(uh, ‘l)h) = ZZ(U},), Vvh €Yy,
ay,(pr, W) + O, W) = (Va, W), Yy € Ay,
bp(wh,pn) + @(up,wy) = 0, VYwy, € Up,
where
ay(pn, Wn) Y. (€Yo, Vyi)e

E€g,
K zl; ({SVWh 'ne}a [ph])e - ZF ({SVph : ”e}v [Wh])e

Z ﬁo (lpn)s [wiD)e+ Y, (=B -Vou+ (r—=V-B)pn, Wi )E

eerh h Eeéh

Y. (i —pisInBlwi e+ Y (i, Wi |- Bl)e.

eEl'?l L)Gl“;r
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DO versus OD

Discretize-then-Optimize

M 0 AT y b
0 oQ BT i = 0
A, B 0 p 7
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DO versus OD

Discretize-then-Optimize

M 0 AT y b

0 oQ BT i = 0

A, B 0 p 7
Optimize-then-Discretize

M 0 A, y b

0 oQ B i = 0

A, B 0 P 7

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



Main Result

The discretize-then-optimize and the optimize-then-discretize
lead the same scheme for symmetric DG methods, i.e., SIPG,
but not for nonsymmetric DG methods, i.e., NIPG, IIPG.
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Main Result

The discretize-then-optimize and the optimize-then-discretize
lead the same scheme for symmetric DG methods, i.e., SIPG,
but not for nonsymmetric DG methods, i.e., NIPG, IIPG.
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Main Result

The discretize-then-optimize and the optimize-then-discretize
lead the same scheme for symmetric DG methods, i.e., SIPG,
but not for nonsymmetric DG methods, i.e., NIPG, IIPG.

minJ(y,u) discretize discretized
st c(y,u) =0 optimal problem
¢optimize
compute
optimize optimality conditions
Same: SIPG
Different: NIPG, IIPG
A A
optimality discretize apply
conditions discretization

H. Yiicel, M. Heikenschloss, and B. Karasézen, Distributed Optimal Control of Diffusion-Convection-Reaction
Equations Using Discontinuous Galerkin Methods, to appear in the Proceedings of ENUMATH 2011 Conference,

Leicester, England, 5-9 September 2011
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Comparison of DO and OD with Boundary Layer

Example

[Collis, Heinkenschloss, 2002] Let
Q=1[0,1]%,6=10"2,0 =45°,8 = (cos 0,sinB),r =0 and = 1.

The exact solutions:
Yer(X1,%2) = N(x)N(x2),  pex(x1,%2) = u(x1)p(x2),

h _ exp((z—1)/€) —exp(—1/¢)
where n@ = z— 1—exp(—1/¢) :
R
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Comparison of DO and OD with Boundary Layer

Example

[Collis, Heinkenschloss, 2002] Let
Q=1[0,1]%,6=10"2,0 =45°,8 = (cos 0,sinB),r =0 and = 1.

The exact solutions:
Yer(X1,%2) = N(x)N(x2),  pex(x1,%2) = u(x1)p(x2),

h _ exp((z—1)/€) —exp(—1/¢)
where n@ = z— 1—exp(—1/¢) :
R

o For SIPG and IIPG, ¢ = 3k(k+1) Ve € I') and
o =6k(k+1) Ve Ty
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Comparison of DO and OD with Boundary Layer

Example

[Collis, Heinkenschloss, 2002] Let
Q=1[0,1]%,6=10"2,0 =45°,8 = (cos 0,sinB),r =0 and = 1.

The exact solutions:
Yer(X1,%2) = N(x)N(x2),  pex(x1,%2) = u(x1)p(x2),

h _ exp((z—1)/€) —exp(—1/¢)
where n@ = z— 1—exp(—1/¢) :
R

o For SIPG and IIPG, ¢ = 3k(k+1) Ve € I') and
o =6k(k+1) Ve Ty

@ For NIPG, o0 =1,VecTy,
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Comparison of DO and OD with Boundary Layer

Example
[Collis, Heinkenschloss, 2002] Let
Q=1[0,1]%,6=10"2,0 =45°,8 = (cos 0,sinB),r =0 and = 1.
The exact solutions:
Yer(X1,%2) = N(x1)N(02),  pex(x1,%2) = p(x1) 1 (x2),

h _ exp((z—1)/€) —exp(—1/¢)
where n@ = z— 1—exp(—1/¢) :
R

o For SIPG and IIPG, ¢ = 3k(k+1) Ve € I') and
o =6k(k+1) Ve Ty

@ For NIPG, o0 =1,VecTy,
@ NIPG with standart penalization denoted by NIPG1, i.e., By =1
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Comparison of DO and OD with Boundary Layer

Example
[Collis, Heinkenschloss, 2002] Let
Q=1[0,1]%,6=10"2,0 =45°,8 = (cos 0,sinB),r =0 and = 1.
The exact solutions:
Yer(X1,%2) = N(x1)N(02),  pex(x1,%2) = p(x1) 1 (x2),

where  xp((z—1)/€) —exp(-1/¢)

n@) = 1 —exp(—1/¢) ’
exp(—z/€) —exp(—1/€)
we) = 1-z- 1—exp(—1/¢ i

o For SIPG and IIPG, ¢ = 3k(k+1) Ve € I') and
o =6k(k+1) Ve Ty

@ For NIPG, o0 =1,VecTy,
@ NIPG with standart penalization denoted by NIPG1, i.e., By =1
o NIPG with superpenalization denoted by NIPG3, i.e., By =3
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SIPG Method

State Control
-1 -1

10 10




NIPG1-NIPG3 Methods

. State . Control
10 10
107 107
L 107 L 107 B .
s s
5 5 ;
~ 107 ~10° !
10 - = NIPGL k=2 10 - %= NIPGL k=2
—— NIPG3, k=1 —o— NIPG3 k=1
e NIFG3, k=2 - o= NIPG3 k2
10° w0t 10t 10° 107 0?10t 10°
. State . Control
10 10
107 107
107 L 107
s s
& S [} !
5 X o
107 | ~ 107 :
3 /s
- e NIRGL k=2
—o— NIPG3 k=1
- o= NIPG3 k=2
10° 107 10" 10° 10° 107 10" 10°

Figure: L, error for NIPG1 and NIPG3 with ¢ = 1072:
discretize-then-optimize (upper), optimize-then-discretize (lower)
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(@ Optimal Control Problems with Adaptivity
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@ Convection dominate problems cause boundary and/or
interior layers
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@ Convection dominate problems cause boundary and/or
interior layers

o Need more elements to obtain more accurate solution
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@ Convection dominate problems cause boundary and/or
interior layers

o Need more elements to obtain more accurate solution

o Instead of refine all region, place only more grid-points
where the solution is less regular,i.e., refine the
discretization near the layers
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A Priori Error Estimates

||u—up|| < CE(u,h)

Contains the unknown solution u
Insufficient since it provides information about the asymptotic
error behavior
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A Posteriori Error Estimates

o It has the following form

|\u—un|| < CE(un,h,datay) + ||data — datay||

~
Error Indicator data oscillations

Error Estimator
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A Posteriori Error Estimates

o It has the following form

|\u—un|| < CE(un,h,datay) + ||data — datay||

~
Error Indicator data oscillations

Error Estimator

o Extracted from the computed numerical solution and from
the given data of the problem

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



A Posteriori Error Estimates

o It has the following form

|\u—un|| < CE(un,h,datay) + ||data — datay||

~
Error Indicator data oscillations

Error Estimator
o Extracted from the computed numerical solution and from
the given data of the problem

o Global upper bounds are sufficient to obtain a numerical
solution with an accuracy a prescribed tolerance
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A Posteriori Error Estimates

o It has the following form

|\u—un|| < CE(un,h,datay) + ||data — datay||

~
Error Indicator data oscillations

Error Estimator

o Extracted from the computed numerical solution and from
the given data of the problem

o Global upper bounds are sufficient to obtain a numerical
solution with an accuracy a prescribed tolerance

o Local lower bounds are necessary to ensure that the grid
is correctly refined
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Adaptive Strategy

’ Initialization:mesh, 0 < rol, 9‘

[ESTIMATE: compute 7|

n < tol

No
| MARK: find subset M; |
! Yes

’REFINE: refine triangles E € ME‘
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Adaptive Strategy

’ Initialization:mesh, 0 < rol, 9‘

[ESTIMATE: compute 7|

n < tol

No
| MARK: find subset M; |

!

’REFINE: refine triangles E € ME‘

Yes

o SOLVE stands for solution of the optimal control problem

using DG discretization on &, mesh
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o ESTIMATE: [Schétzau and Zhu, 2009]

1 1 1

N = (Z (m%)z) NP = (Z (n£)2> ;"= (): (m”é)2> :

E€g), Ec§, EcE,

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



o ESTIMATE: [Schétzau and Zhu, 2009]

1 1 1

N = (Z (m%)z) NP = (Z (n£)2> ;"= (): (m”é)2> :

E€g), Ec§, EcE,
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o ESTIMATE: [Schétzau and Zhu, 2009]

1 1 1

N = (Z (m%)z) NP = (Z (n£)2> ;"= (): (m”é)2> :

Ec§, Ecé, Ecé,
Where i = [+ ()P + (m)?],
mp)? = [(mE)*+mh)*+ M),
me)? = [(mE)’]
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o ESTIMATE: [Schétzau and Zhu, 2009]

1 1 1

N = (Z (n@z) NP = (Z (n§)2> ;"= (): (nzfé)z) :

E€g), Ec§, EcE,

MROTe = () (P ()

(Me)* = [(E)*+(™5,) + ()],

(mg)* = [(mE)*]-
ne: the element residual
My = Pelfu+un+ €Ay — B Vyn—rayill2e), Ec,
ne. = Pell— O~ a)n+€Apn+ By Vo — rapill ), E € En,
Mg, = O —pull2e) E€é.
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Edge part of Estimator

The edge residuals denoted by 1., and 7., coming from the
jump in the numerical solutions

() = S e tpllevull?
o
m,)? = §§j+roh+ —)Iya) H2+Za‘, E+roh+ lllgp — yalll
0 r?
1 1
) = X tpllevpll?
T
1 (o3
(n2)” = 52}7 roh+ thzllerZ +roh+ )H[ph]ll2
l—{h) e
with

02}, Pe = min{h,e” 2 Ty}

N\—

PE= min{hge_2
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Data Approximation Errors

Data approximation terms:
(607 = PRUIF il 22y + 1B = B) - VyullZagey + 10— ri)yll 2oy )
62 = pe(l0va)n—vall72ey + 1B =B - Voulli g
+ =B = =V BupallZey).
The data approximation errors:

1 1

o (gor). o-(zer)
E€é, Eecé,
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o Marking Strategy
For a given universal constant 6, we choose subsets
Mg C &, such that the following bulk criterion [Dorfler, 1996]
is satisfied:

Y (me)><6 ), (ne)*.

EcE, EeMg
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Refinement

o In Refinement step, the marked elements are refined by
longest edge bisection,
2
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Refinement

o In Refinement step, the marked elements are refined by
longest edge bisection,
2

1 3
o whereas the elements of the marked edges are refined by
bisection

1 1 1
AN, K

2 32 l 3 2 | 3
4 4 4
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A Posteriori Error Analysis
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A Posteriori Error Analysis

o Energy Norm

68
IVI1P =Y (1eVyliza +rolylzae) + Z D720
EE&/, eel";,
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A Posteriori Error Analysis

o Energy Norm

68
IVI1P =Y (1eVyliza +rolylzae) + Z D720
EE&/, eel";,

o The semi-norm |- |4 with convective term [Verflirth,2005]

DR = 1B+ X ohet ) D2

ecl

where for g € L*(Q)?,

gl = sup AL
very@njop [0l
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A Posteriori Error Analysis

o Energy Norm

68
IVI1P =Y (1eVyliza +rolylzae) + Z D720
EE&/, eel";,

o The semi-norm |- |4 with convective term [Verflirth,2005]

DR = 1B+ X ohet ) D2

ecl

where for g € L*(Q)?,

gl = sup AL
very@njop [0l

o Assume that ry > 0 and gp = 0.
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Reliability

Istanbul Analysis Semin:



Reliability

o Connection between the control and the adjoint
Ju— ”hHiZ(Q) < llpn — plus] HiZ(Q) + (Tlu)zy

where p|u;] satisfies the following equation:
a(ylup),w) = (up,w) = (f,w),  VweV,
a(w,plun]) + (Y[unl,w) = (a,w),  vwev.
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Reliability

o Connection between the control and the adjoint
Ju— ”hHiZ(Q) < llpn — plus] HiZ(Q) + (Tlu)zy

where p|u;] satisfies the following equation:
a(ylup),w) = (up,w) = (f,w),  VweV,
a(w,plun]) + (Y[unl,w) = (a,w),  vwev.

o Connection between the adjoint and the state It holds
llplun] = palll + plun] — prla < 0P+ 60"+ llyn — y[unlll 2 ()
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Reliability

o Upper bound for state

| [y [wn] = yulll + [y[tn] — ynla < 0¥+ 67
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Reliability

o Upper bound for state

([1y[un] = yulll + [y[un] = yula < 1 +6°
o Reliability of the estimator

lu—unllzi@)+ 1y =yalll+1y=yala + lllp=pulll+Ip—pala
S n'+n’+607+n"+ 67
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Efficiency

Istanbul Analysis Semin:



Efficiency

@ Bounds for the estimator of the state and the adjoint

' < My =alll+1y=yala+ 6"+ [lu—unll2q)
n” < Mp—=pulll+1p—pula+ 6"+ ly—yallr2o)

hold.
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Efficiency

@ Bounds for the estimator of the state and the adjoint
" S My =yalll+1y—ynla + 0"+ llu—unl| 2 ()
n” < lllp—palll+1p—pala+ 6"+ |y —yull2
hold.

o Efficiency of the estimator

n'+n"+n" < flu—unll2@)+ 1y —yulll+1y—yala
+ |llp—paull|+ |p — pnla+ 6> +6".
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Boundary Layer

Example (Collis, Heinkenschloss, 2002)

Let

Q=1[0,12,6=10"36 =45°, = (cosH,sin0),r=0 and o = 1.
The exact solutions:

Yer(X1,%2) = N(x1)N(x2),  Pex(¥1,%2) = p(x1) 1 (x2),

_exp((z—1)/e) —exp(=1/¢€)

@) = 2 1 —exp(—1/¢) '
exp(—z/€) —exp(—1/¢)
pa) = 1-z- 1 —exp(—1/e '

H. Yiicel, M. Heikenschloss, and B. Karasézen, An Adaptive discontinuous Galerkin method for convection

dominated distributed optimal control problems, Applied Numerical Mathematics, 2012. Submitted.
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Uniform Refinement

State Control

Figure: Uniformly refined mesh (16641 nodes) for ¢ = 1073.
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Adaptive Refinement

State Control

Figure: Adaptively refined mesh (15032 nodes) for € = 1073.

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



Adaptive Mesh

[level,nodes]=[14,15032]
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Global Errors

a State
10
)
-2 %\0\’
10 e o,
- " Q
o | o
& LN
~ w
- .
\n R}
-3 - \\ \\
10 1 Adaptive, k=1 i
N
—— Uniform, k=1 I:l‘
- &~ Adaptive, k=2 ‘a
—o— Uniform, k=2
g |
10 5 3 4
10 10 10

Figure: Errors in L? norm using linear and quadratic elements for

e=103.

Number of nodes
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» Control
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0.
-2 =wo.
10 &
N = ns‘q
IS LEN
= Yy o
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_3 N
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- ©- Adaptive, k=1 \\
—— Uniform, k=1 LY
- &~ Adaptive, k=2 ‘n
4 —6— Uniform, k=2
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Number of nodes
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Interior Layer

Example (Heinkenschloss and Leykekhman, 2008)

Q=[0,1%, e=10", B=(1,2), r=0and ®=10".

Exact solution:

x—0.5
Yex(x1,51) = (1—x1)3arctan< 2 - ),

Pex(x1,%2) = x1(1 —x1)x(1 —x2).

Adaptive Optimal Control with DGFEM
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Exact Solutions

State Control

Figure: Surfaces of the exact state (left) and the exact control (right)
fore=10".
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Errors

0.2-

-0.2-

Uniform
M“
-~
05 e
2 oo X
[
% 0
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Adaptive
0.05
o
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- e
05, "~ _—7""05
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0.2
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[ 3
02 '
17 ‘ TN
e 1
05 "~ 05
% 00 %

Figure: Error on uniformly refined mesh (16641 nodes) and
adaptively refined mesh (9252 nodes) using linear elements for
€ =107": state (top row), control (bottom row).

Adaptive Optimal Con
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Adaptive Mesh

[level ,nodes]=[14,9252] [level,nodes]=[20,1000]

Figure: Adaptively refined meshes with linear elements (left,9252
nodes) and quadratic elements (right, 1000 nodes) for e = 10~".
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Global Errors

State Control Variable
-2
_ 10
107
5 s
5 ]
JN JN
-3
—é— Uniform, k=1 10
- @~ Adaptive k=1 —&— Uniform, k=1
- ©- Adaptive k=2 = 9= Adplive, k=L
_ - ©- Adaptive, k=2
10 3 5 3 2 5 > 3 4 S
10 10 10 10 10 10 10 10
Number of nodes Number of nodes

Figure: Errors in L, norm using linear and quadratic elements for
e=10".
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@ Control Constrained Optimal Control Problems
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Control Constrained Optimal Control Problem

min  J(y,u) = % /Q (y(x)—yd(x))2dx+§ u(x)*dx

uclU,,CU

subject to

—€Ay(x) +B(x) - Vy(x) +r(x)ylx) = flx)+ulx), xeQ,
y() = gn(x), xel,

where a closed convex set U,; C U = L*(Q)
Uw={ucU: u, <u<uy, a.einQ},

with constants u,, uy,.
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Optimality Conditions

The Lagrange multipliers: A,, A, € L*(Q)

—&Ay+B-Vy+ry =

y =
—&Ap—B-Vp+(r—V-B)p =
p =

ou—p—A+x =

Aa >0, Ug—u <

Ay >0, u—up <

f+u, x€EQ,
gp, xel,
—(y—ya), x€Q,
0, xel
0, a.e inQ,
0, Ay(u—u,)=0 a.e. inQ,
0, Ap(up—u)=0 a.e. inQ.

Adaptive Optimal Control with DGFEM
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Primal Dual Active Set Strategy (PDAS) with

Semi-Smooth Newton Method

@ Solution operators S,8* and A = A, — A, the
complementary conditions [Bergounioux, Ito and Kunish,
1999]:

—S*Su—ys)+ou+A = 0,
A —min{0,A —c(ug —u)} —max{0,A +c(u—up)} = 0.
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Primal Dual Active Set Strategy (PDAS) with

Semi-Smooth Newton Method

@ Solution operators S,8* and A = A, — A, the
complementary conditions [Bergounioux, Ito and Kunish,
1999]:

—S*(Su—ys)+ou+1 = 0,
A —min{0,A —c(ug —u)} —max{0,A +c(u—up)} = 0.
o Taking ¢ = o,
F(u):=—=S"(Su—yqs)+ou + min{0,S"(Su—yq) — ou,}
+ max{0,5"(Su—yq) — wup} = 0.
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Primal Dual Active Set Strategy (PDAS) with

Semi-Smooth Newton Method

@ Solution operators S,8* and A = A, — A, the
complementary conditions [Bergounioux, Ito and Kunish,
1999]:

—S*(Su—ys)+ou+1 = 0,
A —min{0,A —c(ug —u)} —max{0,A +c(u—up)} = 0.
o Taking ¢ = o,
F(u):=—=S"(Su—yqs)+ou + min{0,S"(Su—yq) — ou,}
+ max{0,5"(Su—yq) — wup} = 0.

@ The Newton derivative of F(u)

Gu) = =S"S+ O+ (Xa-(w) + Xa+())S™S = =21 S"S + ©
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Primal Dual Active Set Strategy (PDAS) with

Semi-Smooth Newton Method

@ Solution operators S,8* and A = A, — A, the
complementary conditions [Bergounioux, Ito and Kunish,
1999]:
—S*(Su—ys)+ou+1 = 0,
A —min{0,A —c(ug —u)} —max{0,A +c(u—up)} = 0.
o Taking ¢ = o,
F(u):=—=S"(Su—yqs)+ou + min{0,S"(Su—yq) — ou,}
+ max{0,5"(Su—yq) — wup} = 0.
@ The Newton derivative of F(u)

Gu)=-SS+o+ (XA*(M) + Xa+( ))S*S = —)CI(M)S*S—I— w
1, fxeA(u

XAw =\ 0, otherwise.
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Optimality System

The active sets

A (u) = {xeQ: S*(Su—yq)— ou, <0},
AT(w) = {xeQ: S (Su—y,)— oup >0},

The inactive set I(u) = Q\ (AT (u) UA™ (u)).
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Optimality System

The active sets

A (u) = {xeQ: S*(Su—yq)— ou, <0},
AT(w) = {xeQ: S (Su—y,)— oup >0},

The inactive set I(u) = Q\ (AT (u) UA™ (u)).
o Newton’s method,

Outpy1 — 21,8 (Sttn1 —Ya) = Xa; Ota + X OUp.
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Optimality System

The active sets

A (u) = {xeQ: S*(Su—yq)— ou, <0},
AT(w) = {xeQ: S (Su—y,)— oup >0},

The inactive set I(u) = Q\ (AT (u) UA™ (u)).
o Newton’s method,

Outpy1 — 21,8 (Sttn1 —Ya) = Xa; Ota + X OUp.

o DG discretized optimality system:

M 0 Ag b
0 oQ dag(x)B = ( OQ(xa-tta + Xa+up) )
A, B 0 7

ST
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Full discretization and variational discretization

0 |lu—upll2(q) = O(h*?) by the fully discrete approaches

H. Yiicel, M. Heikenschloss, and B. Karasézen, A posteriori error estimates of constrained optimal control problem
governed by convection diffusion equations using symmetric interior penalty Galerkin method, Institute of Applied

Mathematics, Middle East Technical University, 2012, Preprint
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0 |lu—upll2(q) = O(h*?) by the fully discrete approaches
o in [Becker and Vexler, 2007] with local projection based
stabilization
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Full discretization and variational discretization

0 |lu—upll2(q) = O(h*?) by the fully discrete approaches
o in [Becker and Vexler, 2007] with local projection based
stabilization
o in [Yan and Zhou, 2009] with edge stabilization
O |lu—upl|2q) = O(h*) by variational discretization, i.e., the
control is not discretized, in [Hinze, Yan and Zhou, 2009]
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Full discretization and variational discretization

0 |lu—upll2(q) = O(h*?) by the fully discrete approaches
o in [Becker and Vexler, 2007] with local projection based
stabilization
o in[Yan and Zhou, 2009] with edge stabilization
O |lu—upl|2q) = O(h*) by variational discretization, i.e., the
control is not discretized, in [Hinze, Yan and Zhou, 2009]
O |lu—unll20) = 0 (h*) by the fully discrete approaches
using DG in [Ylcel, Heinkenschloss and Karas®zen, 2012]

H. Yiicel, M. Heikenschloss, and B. Karasézen, A posteriori error estimates of constrained optimal control problem
governed by convection diffusion equations using symmetric interior penalty Galerkin method, Institute of Applied

Mathematics, Middle East Technical University, 2012, Preprint
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Numerical Results

Example (Hinze, Yan and Zhou, 2009)
Let

=[0,1%,e=103,8=(2,3)" and r=2.

The admissible set U,, = {v € U: v > 0}. Exact state, adjoint and

controls
y(x1,x) = 100(1 —xl)zxfxz(l —2x2)(1 —x2),
p(x1,x) = 50(1—x1) xlxz(l—sz)(l—xz),
1
u(xy,xy) = max{0, fap(x] ,X2) )

Nodes | |ly—yull;2 | order | |[p—pull;2 | order | |u—unl;2 | order

25 4.68e-2 - 2.82e-2 - 1.70e-1 -
81 1.24e-2 | 1.92 | 6.10e-3 1.90 | 4.84e-2 1.82
289 3.10e-3 | 2.00 1.54e-3 1.99 1.20e-2 | 2.02
1089 7.62e-4 | 2.02 | 3.80e-4 | 2.02 | 2.86e-3 | 2.06
4225 1.87e-4 | 2.02 | 9.38e-5 | 2.02 6.92e-4 | 2.05

Adaptive Optimal Control with DGFEM Istanbul Analysis Seminars, March 23, 2012



Circular and Straight Interior Layer Example

Example (Hinze, Yan and Zhou, 2009)
Q=[0,1*, B=(23)7, r=1and o=0.1.

Exact state
1 1

2 1
y(x1,x0) = Earctan ﬁ _§x1+x2_1 :

Straight interior layer with the corresponding adjoint

p(X],Xz) = 16)6](17)61))62(17)62)
o (L e | 2 (2 1\? 1\?
) Earc an \/E 16 X1 5 X2 ) 5
Circular interior layer. Optimal control

1
u(xy,x) = max{—S,min{—l,—Bp(xl,xz)}}.
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Uniform Refinement

Adjoint Control

Adaptive Optimal Control witl FEM



Adaptive Refinement

Adjoint Control
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Adaptive Mesh

[level,nodes]=[11,1204] [level,nodes]=[13,2271] [level,nodes]=[15,4135]

Figure: Adaptively refined meshes at various refinement levels for
£=107°.
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Global Err

i State B Adjoint . Control
10 10 10

0
10 10—1 100
107

107 107"
- = - Adaptive " - = - Adaptive - = - Adaptive

-2

10 "l —— Uniform —*—Uniform —k—Uniform
2 3 4 107 2 3 4 1072 2 3 a4
10 10 10 10 10 10 10 10 10
Number of nodes Number of nodes Number of nodes

Figure: Errors in L, norm for € = 1076,
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Example with Control desired

minimize J(y,u): 2/ —ya(x))?dx + 2/ (x) — ug(x))dx

uclU,CU

Example (Yan, Zhou, 2009)

Q=100,1?% &e=10"* p=(1,0, r=1and o=1.
Exact solutions
y(x1,x2) = 4o~ ((1=1/2)+3(2-0.5)%)/ VE) sin(7x ) sin(7x,),

pxi,x) = e(~((1=1/2°+3(1-0.5)")/VE) sin(7x ) sin(7xy),

u(xy,x,) = max{0,2cos(mx;)cos(mwxy) — 1}.
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Uniform Refinement

State Control

Figure: Uniform mesh (4225 nodes).
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Adaptive Refinement

State Control

L g
0

—
0

Figure: Adaptively refined mesh (2867 nodes).
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Adaptive Mesh

[level,nodes]=[15,2867]

Figure: Adaptively mesh
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Global Err

Adjoint
107

Control

State
-1

10
10°
<] S
w il
N =
10°
- e - Adaptive - @ - Adaptive
. —&—Uniform o|| =% Uniform
10 10
10° 10° 10" 10° 10° 10* 10°
Number of nodes Number of nodes

Number of nodes

Figure: L, errors in the state, the adjoint
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and the control.




@ Conclusions and Outlook
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Conclusions

o State and adjoints are polluted with errors around the
boundary and interior layers using adaptive FEM with
SUPG stabilization.
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Conclusions

o State and adjoints are polluted with errors around the
boundary and interior layers using adaptive FEM with
SUPG stabilization.

o For the adaptive SIPG method, meshes are only refined in
regions where states or adjoints exhibit layers.
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Conclusions

o State and adjoints are polluted with errors around the
boundary and interior layers using adaptive FEM with
SUPG stabilization.

o For the adaptive SIPG method, meshes are only refined in
regions where states or adjoints exhibit layers.

o Optimal convergence orders are obtained for the control
constrained problems.
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Future Work

o Comparison of different error estimators and convergence
analysis
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o Goal-oriented error estimates for optimal control problems
using DG discretization
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Future Work

o Comparison of different error estimators and convergence
analysis

©

hp-adaptivity

©

Nonconforming meshes

©

Goal-oriented error estimates for optimal control problems
using DG discretization

©

Boundary control problems

©

Time dependent optimal control problems
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Future Work

o Comparison of different error estimators and convergence
analysis

o hp-adaptivity
@ Nonconforming meshes

o Goal-oriented error estimates for optimal control problems
using DG discretization

@ Boundary control problems
o Time dependent optimal control problems

o Nonlinear problems
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THANK YOU !
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