Hypercyclicity of Weighted Backward Shifts on Spaces of Real Analytic Functions

> Can Deha Karıksız (joint work with Paweł Domański)

> > Özyeğin University, İstanbul

deha.kariksiz@ozyegin.edu.tr

27.11.2015

- Introduction
- Multipliers on the spaces of real analytic functions
- Density arguments
- Conditions on hypercyclicity of the weighted backward shifts
- Hypercyclicity of the usual backward shift

Definition

An operator T on a topological vector space X is called *hypercyclic* if there is some $x \in X$ such that the set

$$\{x, Tx, T^2x, \cdots, T^nx, \cdots\}$$

is dense in X.

Definition

An operator T on a topological vector space X is called *hypercyclic* if there is some $x \in X$ such that the set

$$\{x, Tx, T^2x, \cdots, T^nx, \cdots\}$$

is dense in X.

The set $\{x, Tx, T^2x, \dots\}$ is called the *orbit* of x under T.

(Birkhoff transitivity theorem) An operator T on a separable Fréchet space X is hypercyclic, if and only if, it is *topologically transitive*, that is, for any pair of nonempty open subsets U, V of X, there exists some $n \in \mathbb{N}$ such that

 $T^n(U) \cap V \neq \emptyset.$

(Birkhoff transitivity theorem) An operator T on a separable Fréchet space X is hypercyclic, if and only if, it is *topologically transitive*, that is, for any pair of nonempty open subsets U, V of X, there exists some $n \in \mathbb{N}$ such that

 $T^n(U) \cap V \neq \emptyset.$

Remark: Any hypercyclic operator on a general topological vector space is topologically transitive, however the converse may not be true.

(Bonet 2000) A topologically transitive linear operator on an arbitrary locally convex space need not be hypercyclic.

Examples of hypercyclic operators: (Birkhoff 1929) The translation operators

$$T_a f(z) = f(z+a), \ a \neq 0$$

on the space $H(\mathbb{C})$ of entire functions,

Examples of hypercyclic operators: (Birkhoff 1929) The *translation operators*

$$T_a f(z) = f(z+a), \ a \neq 0$$

on the space $H(\mathbb{C})$ of entire functions, (MacLane 1952) The *differentiation operator* $D : f \mapsto f'$ on $H(\mathbb{C})$,

Examples of hypercyclic operators: (Birkhoff 1929) The translation operators

$$T_af(z) = f(z+a), \ a \neq 0$$

on the space $H(\mathbb{C})$ of entire functions,

(MacLane 1952) The differentiation operator $D : f \mapsto f'$ on $H(\mathbb{C})$,

(Rolewicz 1962) The multiples of the backward shift

$$\lambda B(x_n)_{n\in\mathbb{N}} = (\lambda x_{n+1})_{n\in\mathbb{N}}$$

for any λ with $|\lambda|>1,$ on the sequence spaces $l_p, \ 1\leq p<\infty,$ or $c_0.$

Introduction Weighted Backward Shifts on Fréchet Sequence Spaces

Let X be a Fréchet sequence space with canonical unit sequences e_n . Then, for a sequence of nonzero scalars $\omega = (\omega_n)_{n \in \mathbb{N}}$, the operator $B_{\omega} : X \to X$ defined by

$$B_{\omega}e_n = \omega_n e_{n-1}, \ n \ge 1, \quad e_0 = 0,$$

is called a weighted backward shift on X.

Introduction Weighted Backward Shifts on Fréchet Sequence Spaces

Let X be a Fréchet sequence space with canonical unit sequences e_n . Then, for a sequence of nonzero scalars $\omega = (\omega_n)_{n \in \mathbb{N}}$, the operator $B_{\omega} : X \to X$ defined by

$$B_{\omega}e_n = \omega_n e_{n-1}, \ n \ge 1, \quad e_0 = 0,$$

is called a weighted backward shift on X.

Theorem (Grosse-Erdmann 2000)

The operator $B_{\omega} : X \to X$, acting on a Fréchet sequence space X in which $(e_n)_{n \in \mathbb{N}}$ is a basis, is hypercyclic, if and only if, there is an increasing sequence $(n_k)_{k \in \mathbb{N}}$ of positive integers such that

$$\left(\prod_{\nu=1}^{n_k}\omega_\nu\right)^{-1}e_{n_k}\to 0$$

in X as $k \to \infty$.

Let $A(\Omega)$ denote the space of all complex-valued real analytic functions on an open set Ω in \mathbb{R} , that is, every function in $A(\Omega)$ develops into a Taylor series at each point of Ω .

Let $A(\Omega)$ denote the space of all complex-valued real analytic functions on an open set Ω in \mathbb{R} , that is, every function in $A(\Omega)$ develops into a Taylor series at each point of Ω .

Topology on $A(\Omega)$

• Projective limit topology

$$A(\Omega) = \operatorname{proj}_{N \in \mathbb{N}} H(K_N) = \operatorname{proj}_{N \in \mathbb{N}} \operatorname{ind}_{n \in \mathbb{N}} H^{\infty}(U_{N,n}),$$

where $(K_N)_{N \in \mathbb{N}}$ is a compact increasing exhaustion of Ω , and $(U_{N,n})_{n \in \mathbb{N}}$ are fundamental sequences of neighborhoods of K_N for each N.

Let $A(\Omega)$ denote the space of all complex-valued real analytic functions on an open set Ω in \mathbb{R} , that is, every function in $A(\Omega)$ develops into a Taylor series at each point of Ω .

Topology on $A(\Omega)$

• Projective limit topology

$$A(\Omega) = \operatorname{proj}_{N \in \mathbb{N}} H(K_N) = \operatorname{proj}_{N \in \mathbb{N}} \operatorname{ind}_{n \in \mathbb{N}} H^{\infty}(U_{N,n}),$$

where $(K_N)_{N \in \mathbb{N}}$ is a compact increasing exhaustion of Ω , and $(U_{N,n})_{n \in \mathbb{N}}$ are fundamental sequences of neighborhoods of K_N for each N.

• Inductive limit topology

$$A(\Omega) = \operatorname{ind} H(U),$$

where the inductive limit is taken over all complex neighborhoods of $\boldsymbol{\Omega}.$

- (Martineau 1966) These topologies are equivalent.
- A(Ω) is a complete, separable, ultrabornological, nuclear, reflexive space.
- The closed graph theorem and the open mapping theorem hold in A(Ω).
- (Domański, Vogt 2000) $A(\Omega)$ has no Schauder basis.

Definition

Given a sequence of nonzero scalars $\omega = (\omega_n)_{n \in \mathbb{N}}$, a linear continuous operator

$$B_{\omega}: A(\Omega) \rightarrow A(\Omega),$$

that sends

- the monomials x^n to $\omega_n x^{n-1}$ for all $n \in \mathbb{N}$,
- the unit function to the zero function,

is called a *weighted backward shift* with the weight sequence ω .

A linear continuous operator

 $M: A(\Omega) \rightarrow A(\Omega)$

is called a *multiplier* whenever every monomial is an eigenvector. The corresponding sequence of eigenvalues $(m_n)_{n \in \mathbb{N}}$ is called the *multiplier sequence* for M. A linear continuous operator

 $M: A(\Omega) \rightarrow A(\Omega)$

is called a *multiplier* whenever every monomial is an eigenvector. The corresponding sequence of eigenvalues $(m_n)_{n \in \mathbb{N}}$ is called the *multiplier sequence* for M.

Theorem (Domański, Langenbruch 2012)

Any multiplier sequence $(m_n)_{n \in \mathbb{N}}$ is a sequence of Laurent coefficients of some function g which is holomorphic at infinity, that is,

$$g(z)=\sum_{n=0}^{\infty}\frac{m_n}{z^{n+1}}.$$

Multipliers on $A(\Omega)$

Proposition

There is a one-to-one correspondence between the weighted backward shifts and the multipliers on $A(\Omega)$.

Multipliers on $A(\Omega)$

Proposition

There is a one-to-one correspondence between the weighted backward shifts and the multipliers on $A(\Omega)$.

Proof If $B_{\omega} : A(\Omega) \to A(\Omega)$ is a weighted backward shift with the weight sequence $\omega = (\omega_n)_{n \in \mathbb{N}}$, then the map $M : A(\Omega) \to A(\Omega)$ defined by

$$M(f)(x) = B_{\omega}(xf(x)), \ f \in A(\Omega), \ x \in \Omega,$$

is a multiplier with the multiplier sequence ω .

Multipliers on $A(\Omega)$

Proposition

There is a one-to-one correspondence between the weighted backward shifts and the multipliers on $A(\Omega)$.

Proof If $B_{\omega} : A(\Omega) \to A(\Omega)$ is a weighted backward shift with the weight sequence $\omega = (\omega_n)_{n \in \mathbb{N}}$, then the map $M : A(\Omega) \to A(\Omega)$ defined by

$$M(f)(x) = B_{\omega}(xf(x)), f \in A(\Omega), x \in \Omega,$$

is a multiplier with the multiplier sequence ω . Similarly, if $M : A(\Omega) \to A(\Omega)$ is a multiplier, then the map $T : A(\Omega) \to A(\Omega)$ defined by

$$T(f)(x) = M\left(rac{f(x)-f(0)}{x}
ight), \ f \in A(\Omega), \ x \in \Omega,$$

is a weighted backward shift.

Let $H(\mathbb{C})$ denote the space of entire functions, and $H(\{0\})$ denote the space of germs of holomorphic functions at zero.

Let $H(\mathbb{C})$ denote the space of entire functions, and $H(\{0\})$ denote the space of germs of holomorphic functions at zero.

Lemma

If B_{ω} is a weighted backward shift on $A(\Omega)$, then B_{ω} is also a weighted backward shift on $H(\{0\})$ and $H(\mathbb{C})$.

Let $H(\mathbb{C})$ denote the space of entire functions, and $H(\{0\})$ denote the space of germs of holomorphic functions at zero.

Lemma

If B_{ω} is a weighted backward shift on $A(\Omega)$, then B_{ω} is also a weighted backward shift on $H(\{0\})$ and $H(\mathbb{C})$.

Proof Let $\omega = (\omega_n)$ be a weight sequence. Then, ω is also a multiplier sequence, and it can be represented as a sequence of Laurent coefficients of some function which is holomorphic at infinity. Hence, $\exists r > 0$ such that

$$\sup_n |\omega_n| r^n < \infty.$$

We can then show that the maps $B_{\omega} : H(\{0\}) \to H(\{0\})$ and $B_{\omega} : H(\mathbb{C}) \to H(\mathbb{C})$ are well-defined linear continuous maps.

As $H(\mathbb{C})$ is dense in $A(\Omega)$, and $A(\Omega)$ is dense in $H(\{0\})$ whenever $0 \in \Omega$, we have the following observation.

Lemma

- If B_{ω} is hypercyclic on $H(\mathbb{C})$, then it is also hypercyclic on $A(\Omega)$.
- If B_{ω} is hypercyclic on $A(\Omega)$, then it is also hypercyclic on $H(\{0\})$.

Proposition

For an open set Ω in \mathbb{R} with $0 \in \Omega$, and a weighted backward shift $B_{\omega} : A(\Omega) \to A(\Omega)$ with the weight sequence $\omega = (\omega_n)_{n \in \mathbb{N}}$,

(a) if there is an increasing sequence (n_k) of positive integers such that for all R > 0,

$$\lim_{k\to\infty}\left(\left(\prod_{\nu=1}^{n_k}\omega_\nu\right)^{-1}R^{n_k}\right)=0,$$

then B_{ω} is hypercyclic on $A(\Omega)$,

Proposition

For an open set Ω in \mathbb{R} with $0 \in \Omega$, and a weighted backward shift $B_{\omega} : A(\Omega) \to A(\Omega)$ with the weight sequence $\omega = (\omega_n)_{n \in \mathbb{N}}$,

(a) if there is an increasing sequence (n_k) of positive integers such that for all R > 0,

$$\lim_{k\to\infty}\left(\left(\prod_{\nu=1}^{n_k}\omega_\nu\right)^{-1}R^{n_k}\right)=0,$$

then B_{ω} is hypercyclic on $A(\Omega)$,

(b) if B_{ω} is hypercyclic on $A(\Omega)$, then there exist an increasing sequence (n_k) of positive integers and R > 0 such that

$$\lim_{k\to\infty}\left(\left(\prod_{\nu=1}^{n_k}\omega_\nu\right)^{-1}R^{n_k}\right)=0.$$

Proof

(a) Let B_ω be a weighted backward shift on A(Ω). Then, it is also a weighted backward shift on H(ℂ). Since H(ℂ) is a Fréchet sequence space, the given condition implies that B_ω is hypercyclic on H(ℂ). Hence, B_ω is hypercyclic on A(Ω).

Proof

- (a) Let B_ω be a weighted backward shift on A(Ω). Then, it is also a weighted backward shift on H(ℂ). Since H(ℂ) is a Fréchet sequence space, the given condition implies that B_ω is hypercyclic on H(ℂ). Hence, B_ω is hypercyclic on A(Ω).
- (b) Let B_{ω} be hypercyclic on $A(\Omega)$. Then, it is also hypercyclic on $H(\{0\})$.

Proof

- (a) Let B_ω be a weighted backward shift on A(Ω). Then, it is also a weighted backward shift on H(ℂ). Since H(ℂ) is a Fréchet sequence space, the given condition implies that B_ω is hypercyclic on H(ℂ). Hence, B_ω is hypercyclic on A(Ω).
- (b) Let B_{ω} be hypercyclic on $A(\Omega)$. Then, it is also hypercyclic on $H(\{0\})$.

The space $H(\{0\})$ is isomorphic to the nuclear Köthe co-echelon space $k_p(V)$, $1 \le p \le \infty$, where

$$k_p(V) = \operatorname{ind}_{n \to} l_p(v_n)$$

with $V = (v_{nk}), v_{nk} = e^{-kn}$.

(Bierstedt, Meise, Summers 1982) For $1 \le p < \infty$, $k_p(V)$ is topologically isomorphic to the space

$$\mathcal{K}_{p}(\bar{V}) = \operatorname{proj}_{\leftarrow \bar{v} \in \bar{V}} l_{p}(\bar{v})$$
$$= \left\{ x = (x_{k}) : \forall \bar{v} \in \bar{V} \| x \|_{\bar{v}} = \left(\sum_{k=1}^{\infty} |x_{k}|^{p} \bar{v}_{k}^{p} \right)^{1/p} \right\},$$

where $\bar{V} = \{\bar{v} = (\bar{v}_k) \in \mathbb{R}^{\mathbb{N}}_+ : \sup_k \frac{\bar{v}_k}{v_{nk}} < \infty \ \forall n \in \mathbb{N} \}.$

(Bierstedt, Meise, Summers 1982) For $1 \le p < \infty$, $k_p(V)$ is topologically isomorphic to the space

$$\begin{aligned} \mathcal{K}_{\rho}(\bar{V}) &= \operatorname{proj}_{\leftarrow \bar{v} \in \bar{V}} I_{\rho}(\bar{v}) \\ &= \left\{ x = (x_k) : \forall \bar{v} \in \bar{V} \ \|x\|_{\bar{v}} = \left(\sum_{k=1}^{\infty} |x_k|^{\rho} \bar{v}_k^{\rho} \right)^{1/\rho} \right\}, \end{aligned}$$

where $\bar{V} = \{\bar{v} = (\bar{v}_k) \in \mathbb{R}^{\mathbb{N}}_+ : \sup_k \frac{\bar{v}_k}{v_{nk}} < \infty \ \forall n \in \mathbb{N}\}.$ Therefore, $H(\{0\})$ is topologically isomorphic to $K_p(\bar{V})$, and B_{ω} is hypercyclic on $K_p(\bar{V})$ by our assumption. Since $B_{\omega}: K_p(\bar{V}) \to K_p(\bar{V})$ is continuous, given $\bar{v}^{(0)} \in \bar{V}$, we can obtain inductively that for every $n \in \mathbb{N}$, there exists $\bar{v}^{(n)} \in \bar{V}$ and constant C_n so that

$$\|B_{\omega}x\|_{\bar{v}^{(n-1)}} \leq C_n \|x\|_{\bar{v}^{(n)}}, \quad x \in \mathcal{K}_p(\bar{V}).$$

Hence, B_{ω} is continuous on $K_p(\bar{V})$ equipped with the topology given by the sequence of norms $(\|\cdot\|_{\bar{v}^{(n)}})_{n\in\mathbb{N}}$.

Since $B_{\omega}: K_p(\bar{V}) \to K_p(\bar{V})$ is continuous, given $\bar{v}^{(0)} \in \bar{V}$, we can obtain inductively that for every $n \in \mathbb{N}$, there exists $\bar{v}^{(n)} \in \bar{V}$ and constant C_n so that

$$\|B_{\omega}x\|_{\bar{v}^{(n-1)}} \leq C_n \|x\|_{\bar{v}^{(n)}}, \quad x \in K_p(\bar{V}).$$

Hence, B_{ω} is continuous on $K_p(\bar{V})$ equipped with the topology given by the sequence of norms $(\|\cdot\|_{\bar{v}^{(n)}})_{n\in\mathbb{N}}$. By completing this space, we obtain a Fréchet space X with the

following properties:

- X is isomorphic to the Köthe sequence space $\lambda_p((v^{(n)})_{n \in \mathbb{N}})$,
- X contains $K_p(\bar{V})$ continuously and densely,
- B_{ω} is a weighted backward shift on X.

Since B_{ω} is hypercyclic on $K_p(\bar{V})$, and $K_p(\bar{V})$ is dense in X, B_{ω} is also hypercyclic on X. As X is a Fréchet sequence space, there is an increasing sequence $(n_k)_{k\in\mathbb{N}}$ of positive integers such that

$$\left(\prod_{
u=1}^{n_k}\omega_
u
ight)^{-1}e_{n_k} o 0$$

in X as $k \to \infty$.

Since B_{ω} is hypercyclic on $K_p(\overline{V})$, and $K_p(\overline{V})$ is dense in X, B_{ω} is also hypercyclic on X. As X is a Fréchet sequence space, there is an increasing sequence $(n_k)_{k\in\mathbb{N}}$ of positive integers such that

$$\left(\prod_{
u=1}^{n_k}\omega_
u
ight)^{-1}e_{n_k} o 0$$

in X as $k \to \infty$.

Then, we can show that there exists R > 0 satisfying

$$\lim_{k\to\infty}\left(\left(\prod_{\nu=1}^{n_k}\omega_\nu\right)^{-1}R^{n_k}\right)=0.$$
Problem

Clearly, there are weight sequences satisfying the condition

$$\lim_{k\to\infty}\left(\left(\prod_{\nu=1}^{n_k}\omega_\nu\right)^{-1}R^{n_k}\right)=0$$

for some R > 0, but not all R > 0.

Problem

Clearly, there are weight sequences satisfying the condition

$$\lim_{k\to\infty}\left(\left(\prod_{\nu=1}^{n_k}\omega_\nu\right)^{-1}R^{n_k}\right)=0$$

for some R > 0, but not all R > 0.

Example The usual backward shift on $A(\Omega)$, that is, $\omega = (\omega_n)$ where $\omega_n = 1$ for all $n \in \mathbb{N}$.

Problem

Clearly, there are weight sequences satisfying the condition

$$\lim_{k\to\infty}\left(\left(\prod_{\nu=1}^{n_k}\omega_\nu\right)^{-1}R^{n_k}\right)=0$$

for some R > 0, but not all R > 0.

Example The usual backward shift on $A(\Omega)$, that is, $\omega = (\omega_n)$ where $\omega_n = 1$ for all $n \in \mathbb{N}$. **Question** Is the usual backward shift on $A(\Omega)$ hypercyclic?

Hypercyclicity of the Usual Backward Shift on $A(\Omega)$

Theorem

The usual backward shift on $A(\mathbb{R})$ is hypercyclic.

Theorem

The usual backward shift on $A(\mathbb{R})$ is hypercyclic .

Proof The usual backward shift $B : A(\mathbb{R}) \to A(\mathbb{R})$, where $B(x^n) = x^{n-1}$ for all $n \in \mathbb{N}$ and $B(\mathbf{1}) = \mathbf{0}$, coincides with the function

$$T(f)(x) = \frac{f(x) - f(0)}{x}$$

on polynomials. Since the polynomials are dense in $A(\mathbb{R})$, we have B = T.

Hypercyclicity of the Usual Backward Shift on $A(\Omega)$

If we take the strip

$$S = \{z \in \mathbb{C} : |\mathrm{Im} \ z| < 1/2\},\$$

then H(S) is dense in $A(\mathbb{R})$, so it is enough to show that T is hypercyclic on H(S). For this purpose, we need the following criterion.

If we take the strip

$$S = \{z \in \mathbb{C} : |\mathrm{Im} \ z| < 1/2\},\$$

then H(S) is dense in $A(\mathbb{R})$, so it is enough to show that T is hypercyclic on H(S). For this purpose, we need the following criterion.

Godefroy-Shapiro criterion

Let T be an operator on a separable Fréchet space X. If the subspaces

$$\begin{split} X_0 &:= \operatorname{span} \{ x \in X : Tx = \lambda x \text{ for some } \lambda \text{ with } |\lambda| < 1 \}, \\ Y_0 &:= \operatorname{span} \{ x \in X : Tx = \lambda x \text{ for some } \lambda \text{ with } |\lambda| > 1 \} \end{split}$$

are dense in X, then T is hypercyclic.

Hypercyclicity of the Usual Backward Shift on $A(\Omega)$

Solving the equation $Tf = \lambda f$, we can observe that for any $\zeta \in \hat{\mathbb{C}} \backslash S$, the function

$$f_{\zeta}(z)=\frac{1}{\zeta-z}$$

is an eigenfunction of T with eigenvalue $1/\zeta$.

Solving the equation $Tf = \lambda f$, we can observe that for any $\zeta \in \hat{\mathbb{C}} \backslash S$, the function

$$f_{\zeta}(z) = rac{1}{\zeta - z}$$

is an eigenfunction of T with eigenvalue $1/\zeta$. Using a variation of Runge's Theorem and the Grothendieck -Köthe - Silva duality, we show that

$$\operatorname{span}\{f_{\zeta}:\zeta\in\hat{\mathbb{C}}\backslash S\}$$

are dense in H(S) for the separate cases $|\zeta| < 1$ and $|\zeta| > 1$.

Solving the equation $Tf = \lambda f$, we can observe that for any $\zeta \in \hat{\mathbb{C}} \backslash S$, the function

$$f_{\zeta}(z) = rac{1}{\zeta - z}$$

is an eigenfunction of T with eigenvalue $1/\zeta$. Using a variation of Runge's Theorem and the Grothendieck -Köthe - Silva duality, we show that

$$\operatorname{span}\{f_{\zeta}:\zeta\in\hat{\mathbb{C}}\backslash S\}$$

are dense in H(S) for the separate cases $|\zeta| < 1$ and $|\zeta| > 1$. Therefore, by the Godefroy-Shapiro criterion, T is hypercyclic on H(S), which implies that T is hypercyclic on $A(\mathbb{R})$.

References I

- K.D. Bierstedt, R.G. Meise, W.H. Summers, Köthe sets and Köthe sequence spaces, Functional Analysis, Holomorphy and Approximation Theory 71 (1982), 27-91.
- P. Domański, M. Langenbruch, Representation of multipliers on spaces of real analytic functions, Analysis 32 (2012), 137–162.
- P. Domański, D. Vogt, *The space of real-analytic functions has no basis*, Studia Math. 142 (2) (2000), 187–200.
- K.-G. Grosse-Erdmann, *Hypercyclic and chaotic weighted shifts*, Studia Math. 139 (2000), 47–68.
- A. Martineau, *Sur la topologie des espaces de fonctions holomorphes*, Math. Ann. 163 (1966), 62–88.
- S. Rolewicz, *On orbits of elements*, Studia Math. 32 (1969), 17–22.

The End