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Introduction
Hypercyclicity

Definition

An operator T on a topological vector space X is called
hypercyclic if there is some x ∈ X such that the set

{x ,Tx ,T 2x , · · · ,T nx , · · · }

is dense in X .

The set {x ,Tx ,T 2x , · · · } is called the orbit of x under T .
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Introduction
Hypercyclicity

(Birkhoff transitivity theorem) An operator T on a separable
Fréchet space X is hypercyclic, if and only if, it is topologically
transitive, that is, for any pair of nonempty open subsets U, V of
X , there exists some n ∈ N such that

T n(U) ∩ V 6= ∅.

Remark: Any hypercyclic operator on a general topological vector
space is topologically transitive, however the converse may not be
true.
(Bonet 2000) A topologically transitive linear operator on an
arbitrary locally convex space need not be hypercyclic.
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Hypercyclicity

Examples of hypercyclic operators:
(Birkhoff 1929) The translation operators

Taf (z) = f (z + a), a 6= 0

on the space H(C) of entire functions,

(MacLane 1952) The differentiation operator D : f 7→ f ′ on
H(C),
(Rolewicz 1962) The multiples of the backward shift

λB(xn)n∈N = (λxn+1)n∈N

for any λ with |λ| > 1, on the sequence spaces lp, 1 ≤ p <∞, or
c0.
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Introduction
Weighted Backward Shifts on Fréchet Sequence Spaces

Let X be a Fréchet sequence space with canonical unit sequences
en. Then, for a sequence of nonzero scalars ω = (ωn)n∈N, the
operator Bω : X → X defined by

Bωen = ωnen−1, n ≥ 1, e0 = 0,

is called a weighted backward shift on X .

Theorem (Grosse-Erdmann 2000)

The operator Bω : X → X , acting on a Fréchet sequence space X
in which (en)n∈N is a basis, is hypercyclic, if and only if, there is an
increasing sequence (nk)k∈N of positive integers such that(

nk∏
ν=1

ων

)−1

enk → 0

in X as k →∞.
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Introduction
The Spaces of Real Analytic Functions

Let A(Ω) denote the space of all complex-valued real analytic
functions on an open set Ω in R, that is, every function in A(Ω)
develops into a Taylor series at each point of Ω.

Topology on A(Ω)

Projective limit topology

A(Ω) = projN∈NH(KN) = projN∈N indn∈N H∞(UN,n),

where (KN)N∈N is a compact increasing exhaustion of Ω, and
(UN,n)n∈N are fundamental sequences of neighborhoods of KN

for each N.

Inductive limit topology

A(Ω) = ind H(U),

where the inductive limit is taken over all complex
neighborhoods of Ω.



Introduction
The Spaces of Real Analytic Functions

Let A(Ω) denote the space of all complex-valued real analytic
functions on an open set Ω in R, that is, every function in A(Ω)
develops into a Taylor series at each point of Ω.

Topology on A(Ω)

Projective limit topology

A(Ω) = projN∈NH(KN) = projN∈N indn∈N H∞(UN,n),

where (KN)N∈N is a compact increasing exhaustion of Ω, and
(UN,n)n∈N are fundamental sequences of neighborhoods of KN

for each N.

Inductive limit topology

A(Ω) = ind H(U),

where the inductive limit is taken over all complex
neighborhoods of Ω.



Introduction
The Spaces of Real Analytic Functions

Let A(Ω) denote the space of all complex-valued real analytic
functions on an open set Ω in R, that is, every function in A(Ω)
develops into a Taylor series at each point of Ω.

Topology on A(Ω)

Projective limit topology

A(Ω) = projN∈NH(KN) = projN∈N indn∈N H∞(UN,n),

where (KN)N∈N is a compact increasing exhaustion of Ω, and
(UN,n)n∈N are fundamental sequences of neighborhoods of KN

for each N.

Inductive limit topology

A(Ω) = ind H(U),

where the inductive limit is taken over all complex
neighborhoods of Ω.



Introduction
The Spaces of Real Analytic Functions

(Martineau 1966) These topologies are equivalent.

A(Ω) is a complete, separable, ultrabornological, nuclear,
reflexive space.

The closed graph theorem and the open mapping theorem
hold in A(Ω).

(Domański, Vogt 2000) A(Ω) has no Schauder basis.



Introduction
Weighted Backward Shifts on A(Ω)

Definition

Given a sequence of nonzero scalars ω = (ωn)n∈N, a linear
continuous operator

Bω : A(Ω)→ A(Ω),

that sends

the monomials xn to ωnx
n−1 for all n ∈ N,

the unit function to the zero function,

is called a weighted backward shift with the weight sequence ω.



Multipliers on A(Ω)

A linear continuous operator

M : A(Ω)→ A(Ω)

is called a multiplier whenever every monomial is an eigenvector.
The corresponding sequence of eigenvalues (mn)n∈N is called the
multiplier sequence for M.

Theorem (Domański, Langenbruch 2012)

Any multiplier sequence (mn)n∈N is a sequence of Laurent
coefficients of some function g which is holomorphic at infinity,
that is,

g(z) =
∞∑
n=0

mn

zn+1
.
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Multipliers on A(Ω)

Proposition

There is a one-to-one correspondence between the weighted
backward shifts and the multipliers on A(Ω).

Proof If Bω : A(Ω)→ A(Ω) is a weighted backward shift with the
weight sequence ω = (ωn)n∈N, then the map M : A(Ω)→ A(Ω)
defined by

M(f )(x) = Bω(xf (x)), f ∈ A(Ω), x ∈ Ω,

is a multiplier with the multiplier sequence ω.
Similarly, if M : A(Ω)→ A(Ω) is a multiplier, then the map
T : A(Ω)→ A(Ω) defined by

T (f )(x) = M

(
f (x)− f (0)

x

)
, f ∈ A(Ω), x ∈ Ω,

is a weighted backward shift.
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Density Arguments

Let H(C) denote the space of entire functions, and H({0}) denote
the space of germs of holomorphic functions at zero.

Lemma

If Bω is a weighted backward shift on A(Ω), then Bω is also a
weighted backward shift on H({0}) and H(C).

Proof Let ω = (ωn) be a weight sequence. Then, ω is also a
multiplier sequence, and it can be represented as a sequence of
Laurent coefficients of some function which is holomorphic at
infinity. Hence, ∃r > 0 such that

sup
n
|ωn|rn <∞.

We can then show that the maps Bω : H({0})→ H({0}) and
Bω : H(C)→ H(C) are well-defined linear continuous maps.
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Density Arguments

As H(C) is dense in A(Ω), and A(Ω) is dense in H({0}) whenever
0 ∈ Ω, we have the following observation.

Lemma

If Bω is hypercyclic on H(C), then it is also hypercyclic on
A(Ω).

If Bω is hypercyclic on A(Ω), then it is also hypercyclic on
H({0}).



Conditions on the Hypercyclicity of Bω
Main Proposition

Proposition

For an open set Ω in R with 0 ∈ Ω, and a weighted backward shift
Bω : A(Ω)→ A(Ω) with the weight sequence ω = (ωn)n∈N,

(a) if there is an increasing sequence (nk) of positive integers
such that for all R > 0,

lim
k→∞

( nk∏
ν=1

ων

)−1

Rnk

 = 0,

then Bω is hypercyclic on A(Ω),

(b) if Bω is hypercyclic on A(Ω), then there exist an increasing
sequence (nk) of positive integers and R > 0 such that

lim
k→∞

( nk∏
ν=1

ων

)−1

Rnk

 = 0.
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Conditions on the Hypercyclicity of Bω
Proof of the Main Proposition

Proof

(a) Let Bω be a weighted backward shift on A(Ω). Then, it is also
a weighted backward shift on H(C). Since H(C) is a Fréchet
sequence space, the given condition implies that Bω is
hypercyclic on H(C). Hence, Bω is hypercyclic on A(Ω).

(b) Let Bω be hypercyclic on A(Ω). Then, it is also hypercyclic on
H({0}).
The space H({0}) is isomorphic to the nuclear Köthe
co-echelon space kp(V ), 1 ≤ p ≤ ∞, where

kp(V ) = indn→lp(vn)

with V = (vnk), vnk = e−kn.
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Conditions on the Hypercyclicity of Bω
Proof of the Main Proposition

(Bierstedt, Meise, Summers 1982) For 1 ≤ p <∞, kp(V ) is
topologically isomorphic to the space

Kp(V̄ ) = proj←v̄∈V̄ lp(v̄)

=

x = (xk) : ∀v̄ ∈ V̄ ‖x‖v̄ =

( ∞∑
k=1

|xk |p v̄pk

)1/p
 ,

where V̄ = {v̄ = (v̄k) ∈ RN
+ : supk

v̄k
vnk

<∞ ∀n ∈ N}.

Therefore, H({0}) is topologically isomorphic to Kp(V̄ ), and Bω is
hypercyclic on Kp(V̄ ) by our assumption.



Conditions on the Hypercyclicity of Bω
Proof of the Main Proposition

(Bierstedt, Meise, Summers 1982) For 1 ≤ p <∞, kp(V ) is
topologically isomorphic to the space

Kp(V̄ ) = proj←v̄∈V̄ lp(v̄)

=

x = (xk) : ∀v̄ ∈ V̄ ‖x‖v̄ =

( ∞∑
k=1

|xk |p v̄pk

)1/p
 ,

where V̄ = {v̄ = (v̄k) ∈ RN
+ : supk

v̄k
vnk

<∞ ∀n ∈ N}.
Therefore, H({0}) is topologically isomorphic to Kp(V̄ ), and Bω is
hypercyclic on Kp(V̄ ) by our assumption.



Conditions on the Hypercyclicity of Bω
Proof of the Main Proposition

Since Bω : Kp(V̄ )→ Kp(V̄ ) is continuous, given v̄ (0) ∈ V̄ , we can
obtain inductively that for every n ∈ N, there exists v̄ (n) ∈ V̄ and
constant Cn so that

‖Bωx‖v̄ (n−1) ≤ Cn‖x‖v̄ (n) , x ∈ Kp(V̄ ).

Hence, Bω is continuous on Kp(V̄ ) equipped with the topology
given by the sequence of norms (‖ · ‖v̄ (n))n∈N.

By completing this space, we obtain a Fréchet space X with the
following properties:

X is isomorphic to the Köthe sequence space λp((v (n))n∈N),

X contains Kp(V̄ ) continuously and densely,

Bω is a weighted backward shift on X .
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Some Problems

Problem

Clearly, there are weight sequences satisfying the condition

lim
k→∞

( nk∏
ν=1

ων

)−1

Rnk

 = 0

for some R > 0, but not all R > 0.

Example The usual backward shift on A(Ω), that is, ω = (ωn)
where ωn = 1 for all n ∈ N.
Question Is the usual backward shift on A(Ω) hypercyclic?
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Hypercyclicity of the Usual Backward Shift on A(Ω)

Theorem

The usual backward shift on A(R) is hypercyclic .

Proof The usual backward shift B : A(R)→ A(R), where
B(xn) = xn−1 for all n ∈ N and B(1) = 0, coincides with the
function

T (f )(x) =
f (x)− f (0)

x

on polynomials. Since the polynomials are dense in A(R), we have
B = T .
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Hypercyclicity of the Usual Backward Shift on A(Ω)

If we take the strip

S = {z ∈ C : |Im z | < 1/2},

then H(S) is dense in A(R), so it is enough to show that T is
hypercyclic on H(S). For this purpose, we need the following
criterion.

Godefroy-Shapiro criterion

Let T be an operator on a separable Fréchet space X . If the
subspaces

X0 := span{x ∈ X : Tx = λx for some λ with |λ| < 1},
Y0 := span{x ∈ X : Tx = λx for some λ with |λ| > 1}

are dense in X , then T is hypercyclic.
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Hypercyclicity of the Usual Backward Shift on A(Ω)

Solving the equation Tf = λf , we can observe that for any
ζ ∈ Ĉ\S , the function

fζ(z) =
1

ζ − z

is an eigenfunction of T with eigenvalue 1/ζ.

Using a variation of Runge’s Theorem and the Grothendieck -
Köthe - Silva duality, we show that

span{fζ : ζ ∈ Ĉ\S}

are dense in H(S) for the separate cases |ζ| < 1 and |ζ| > 1.
Therefore, by the Godefroy-Shapiro criterion, T is hypercyclic on
H(S), which implies that T is hypercyclic on A(R).
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