Pluricomplex Green functions with colliding poles

Alexander Rashkovskii

University of Stavanger, Norway
Joint work with Pascal Thomas (Toulouse)
1. Setting of the problem

In \mathbb{C}: Green function of $D \subset \mathbb{C}$ with pole at $a \in D$: the (unique) solution $G(z, a)$ of $\frac{1}{2\pi} \Delta G = \delta_a$, $G|_{\partial D} = 0$.

With several poles at $A = \{a_1, \ldots, a_N\}$: $\frac{1}{2\pi} \Delta G = \sum_k \delta_{a_k}$.

Obviously, $G(z, A) = \sum_k G(z, a_k)$.

If all $a_k \rightarrow a \in D$: $G(z, A) \rightarrow N \cdot G(z, a)$, locally uniformly outside a.

In \mathbb{C}^n, $n > 1$: D - bounded hyperconvex domain (f. ex., polydisk/ball)

pluricomplex Green function: $G(z, a) \in \text{PSH}^-(D)$, $G|_{\partial D} = 0$, $(dd^c G)^n = 0$ on $D \setminus \{a\}$, $G(z, a) = \log |z - a| + O(1)$ as $z \rightarrow a$.

If $A = \{a_1, \ldots, a_N\} \subset D$: $G(z, a_j) = \log |z - a_j| + O(1)$ as $z \rightarrow a_j$, $1 \leq j \leq N$ (V. Zakhariuta)

$G(z, A) \geq \sum_k G(z, a_k)$, typically $>.$

$G(z, A)$ depends continuously on the poles, provided they do not collide.

Problem: What happens if all $a_k \rightarrow a \in D$?
1. Setting of the problem

In \mathbb{C}: Green function of $D \subset \mathbb{C}$ with pole at $a \in D$: the (unique) solution $G(z, a)$ of $\frac{1}{2\pi} \Delta G = \delta_a$, $G|_{\partial D} = 0$.

With several poles at $A = \{a_1, \ldots, a_N\}$: $\frac{1}{2\pi} \Delta G = \sum_k \delta_{a_k}$.

Obviously, $G(z, A) = \sum_k G(z, a_k)$.

If all $a_k \to a \in D$: $G(z, A) \to N \cdot G(z, a)$, locally uniformly outside a.

In \mathbb{C}^n, $n > 1$: D - bounded hyperconvex domain (f. ex., polydisk/ball)

pluri\textit{complex} Green function: $G(z, a) \in \text{PSH}^{-}(D)$, $G|_{\partial D} = 0$, $(dd^c G)^n = 0$ on $D \setminus \{a\}$, $G(z, a) = \log |z - a| + O(1)$ as $z \to a$.

If $A = \{a_1, \ldots, a_N\} \subset D$: $G(z, a_j) = \log |z - a_j| + O(1)$ as $z \to a_j$, $1 \leq j \leq N$ (V. Zakhariuta)

$G(z, A) \geq \sum_k G(z, a_k)$, typically $>$. $G(z, A)$ depends continuously on the poles, provided they do not collide.

Problem: What happens if all $a_k \to a \in D$?
1. Setting of the problem

In \(\mathbb{C} \): Green function of \(D \subset \mathbb{C} \) with pole at \(a \in D \):
the (unique) solution \(G(z, a) \) of \(\frac{1}{2\pi} \Delta G = \delta_a \), \(G|_{\partial D} = 0 \).

With several poles at \(A = \{a_1, \ldots, a_N\} \): \(\frac{1}{2\pi} \Delta G = \sum_k \delta_{a_k} \).

Obviously, \(G(z, A) = \sum_k G(z, a_k) \).

If all \(a_k \to a \in D \): \(G(z, A) \to N \cdot G(z, a) \), locally uniformly outside \(a \).

In \(\mathbb{C}^n, n > 1 \): \(D \) - bounded hyperconvex domain (f. ex., polydisk/ball)

Pluricomplex Green function: \(G(z, a) \in \text{PSH}^{-}(D), \) \(G|_{\partial D} = 0 \),
\((dd^c G)^n = 0 \) on \(D \setminus \{a\} \), \(G(z, a) = \log |z - a| + O(1) \) as \(z \to a \).

If \(A = \{a_1, \ldots, a_N\} \subset D \): \(G(z, a_j) = \log |z - a_j| + O(1) \) as \(z \to a_j \),
\(1 \leq j \leq N \) (V. Zakhariuta)

\(G(z, A) \geq \sum_k G(z, a_k) \), typically >.

\(G(z, A) \) depends continuously on the poles, provided they do not collide.

Problem: What happens if all \(a_k \to a \in D \)?
1. Setting of the problem

In \(\mathbb{C} \): Green function of \(D \subset \mathbb{C} \) with pole at \(a \in D \): the (unique) solution \(G(z, a) \) of \(\frac{1}{2\pi} \Delta G = \delta_a \), \(G|_{\partial D} = 0 \).

With several poles at \(A = \{a_1, \ldots, a_N\} \): \(\frac{1}{2\pi} \Delta G = \sum_k \delta_{a_k} \).

Obviously, \(G(z, A) = \sum_k G(z, a_k) \).

If all \(a_k \to a \in D \): \(G(z, A) \to N \cdot G(z, a) \), locally uniformly outside \(a \).

In \(\mathbb{C}^n \), \(n > 1 \): \(D \) - bounded hyperconvex domain (f. ex., polydisk/ball)

pluricomplex Green function: \(G(z, a) \in \text{PSH}^{-}(D) \), \(G|_{\partial D} = 0 \),
\((dd^c G)^n = 0 \) on \(D \setminus \{a\} \), \(G(z, a) = \log |z - a| + O(1) \) as \(z \to a \).

If \(A = \{a_1, \ldots, a_N\} \subset D \): \(G(z, a_j) = \log |z - a_j| + O(1) \) as \(z \to a_j \), \(1 \leq j \leq N \) (V. Zakhariuta)

\(G(z, A) \geq \sum_k G(z, a_k) \), typically >.

\(G(z, A) \) depends continuously on the poles, provided *they do not collide*.

Problem: What happens if all \(a_k \to a \in D \)?
1. Setting of the problem

In \(\mathbb{C} \): Green function of \(D \subset \mathbb{C} \) with pole at \(a \in D \):
the (unique) solution \(G(z, a) \) of \(\frac{1}{2\pi} \Delta G = \delta_a \), \(G|_{\partial D} = 0 \).

With several poles at \(A = \{a_1, \ldots, a_N\} \): \(\frac{1}{2\pi} \Delta G = \sum_k \delta_{a_k} \).

Obviously, \(G(z, A) = \sum_k G(z, a_k) \).

If all \(a_k \to a \in D \): \(G(z, A) \to N \cdot G(z, a) \), locally uniformly outside \(a \).

In \(\mathbb{C}^n, n > 1 \): \(D \) - bounded hyperconvex domain (f. ex., polydisk/ball)

pluri\- \-complex Green function: \(G(z, a) \in \text{PSH}^{-}(D) \), \(G|_{\partial D} = 0 \),
\((dd^c G)^n = 0 \) on \(D \setminus \{a\} \), \(G(z, a) = \log |z - a| + O(1) \) as \(z \to a \).

If \(A = \{a_1, \ldots, a_N\} \subset D \): \(G(z, a_j) = \log |z - a_j| + O(1) \) as \(z \to a_j \),
\(1 \leq j \leq N \) (V. Zakhariuta)

\(G(z, A) \geq \sum_k G(z, a_k) \), typically >.

\(G(z, A) \) depends continuously on the poles, provided they do not collide.

Problem: What happens if all \(a_k \to a \in D \)?
1. Setting of the problem

In \mathbb{C}: Green function of $D \subset \mathbb{C}$ with pole at $a \in D$:
the (unique) solution $G(z, a)$ of $\frac{1}{2\pi} \Delta G = \delta_a$, $G|_{\partial D} = 0$.

With several poles at $A = \{a_1, \ldots, a_N\}$: $\frac{1}{2\pi} \Delta G = \sum_k \delta_{a_k}$.

Obviously, $G(z, A) = \sum_k G(z, a_k)$.

If all $a_k \to a \in D$: $G(z, A) \to N \cdot G(z, a)$, locally uniformly outside a.

In \mathbb{C}^n, $n > 1$: D - bounded hyperconvex domain (f. ex., polydisk/ball)

pluricomplex Green function: $G(z, a) \in \text{PSH}^-(D)$, $G|_{\partial D} = 0$,
$(dd^c G)^n = 0$ on $D \setminus \{a\}$, $G(z, a) = \log |z - a| + O(1)$ as $z \to a$.

If $A = \{a_1, \ldots, a_N\} \subset D$: $G(z, a_j) = \log |z - a_j| + O(1)$ as $z \to a_j$, $1 \leq j \leq N$ (V. Zakhariuta)

$G(z, A) \geq \sum_k G(z, a_k)$, typically $>$.

$G(z, A)$ depends continuously on the poles, provided they do not collide.

Problem: What happens if all $a_k \to a \in D$?
1. Setting of the problem

In \(\mathbb{C} \): Green function of \(D \subset \mathbb{C} \) with pole at \(a \in D \):
the (unique) solution \(G(z, a) \) of \(\frac{1}{2\pi} \Delta G = \delta_a, \ G|_{\partial D} = 0 \).

With several poles at \(A = \{a_1, \ldots, a_N\} \): \(\frac{1}{2\pi} \Delta G = \sum_k \delta_{a_k} \).

Obviously, \(G(z, A) = \sum_k G(z, a_k) \).

If all \(a_k \to a \in D \): \(G(z, A) \to N \cdot G(z, a), \) locally uniformly outside \(a \).

In \(\mathbb{C}^n, n > 1 \): \(D \) - bounded hyperconvex domain (f. ex., polydisk/ball)

pluri\!complex Green function: \(G(z, a) \in \text{PSH}^- (D), \ G|_{\partial D} = 0, \)
\((dd^c G)^n = 0 \) on \(D \setminus \{a\} \), \(G(z, a) = \log |z - a| + O(1) \) as \(z \to a \).

If \(A = \{a_1, \ldots, a_N\} \subset D \): \(G(z, a_j) = \log |z - a_j| + O(1) \) as \(z \to a_j \),
\(1 \leq j \leq N \) (V. Zakhariuta)

\(G(z, A) \geq \sum_k G(z, a_k) \), typically >.

\(G(z, A) \) depends continuously on the poles, provided they do not collide.

Problem: What happens if all \(a_k \to a \in D \)?
First examples

Example 1. \(D = \mathbb{D}^2 \subset \mathbb{C}^2, \ N = 2, \ a_1 = 0, \ a_2 \to 0. \)

If \(a_2 = (\varepsilon, 0) \), then \(G(z, A_\varepsilon) \to \max\{2 \log |z_1|, \log |z_2|\} \).

If \(a_2 = (0, \varepsilon) \), then \(G(z, A_\varepsilon) \to \max\{\log |z_1|, 2 \log |z_2|\} \).

So: no 'unrestricted' limit exists.

Can be shown: a 'restricted' limit exists iff \(\exists \lim_{\varepsilon \to 0} \frac{a_2}{|a_2|} = v \in S_1 \), and then

\[
\lim_{\varepsilon \to 0} G(z, A_\varepsilon) = \max\{2 \log |\xi_1|, \log |\xi_2|\}
\]

with \((\xi_1, \xi_2)\) - coordinates of \(z \) in an orthonormal basis \(\{v, w\} \).
First examples

Example 1. \(D = \mathbb{D}^2 \subset \mathbb{C}^2, \ N = 2, \ a_1 = 0, \ a_2 \to 0. \)

If \(a_2 = (\varepsilon, 0), \) then \(G(z, A_\varepsilon) \to \max\{2 \log |z_1|, \log |z_2|\}. \)

If \(a_2 = (0, \varepsilon), \) then \(G(z, A_\varepsilon) \to \max\{\log |z_1|, 2 \log |z_2|\}. \)

So: no 'unrestricted' limit exists.

Can be shown: a 'restricted' limit exists iff \(\exists \lim_{\varepsilon \to 0} \frac{a_2}{|a_2|} = \nu \in S_1, \) and then

\[
\lim_{\varepsilon \to 0} G(z, A_\varepsilon) = \max\{2 \log |\xi_1|, \log |\xi_2|\}
\]

with \((\xi_1, \xi_2)\) - coordinates of \(z\) in an orthonormal basis \(\{\nu, w\}\).
First examples

Example 1. $D = \mathbb{D}^2 \subset \mathbb{C}^2$, $N = 2$, $a_1 = 0$, $a_2 \to 0$.

If $a_2 = (\varepsilon, 0)$, then $G(z, A_\varepsilon) \to \max\{2 \log |z_1|, \log |z_2|\}$.

If $a_2 = (0, \varepsilon)$, then $G(z, A_\varepsilon) \to \max\{\log |z_1|, 2 \log |z_2|\}$.

So: no 'unrestricted' limit exists.

Can be shown: a 'restricted' limit exists iff $\exists \lim \frac{a_2}{|a_2|} = \nu \in S_1$, and then

$$\lim_{\varepsilon \to 0} G(z, A_\varepsilon) = \max\{2 \log |\xi_1|, \log |\xi_2|\}$$

with (ξ_1, ξ_2) - coordinates of z in an orthonormal basis $\{\nu, w\}$.
Example 2. $D = \mathbb{D}^2, N = 4, a_1 = 0, a_2 = (\varepsilon, 0), a_3 = (0, \varepsilon), a_4 = (\varepsilon, \varepsilon)$.

\[
G(z, A_\varepsilon) \rightarrow \max\{2 \log |z_1|, 2 \log |z_2|\}.
\]
Green functions of ideals

Given an ideal \(\mathcal{I} = \langle \psi_1, \ldots, \psi_p \rangle \subset \mathcal{O}(D) \), the Green function \(G_\mathcal{I} \) satisfies

\[
(dd^c G)^n = 0 \text{ on } D \setminus V(\mathcal{I}), \quad G = \log |\psi| + O(1), \quad G|_{\partial D} = 0,
\]

where \(V(\mathcal{I}) = \{z : f(z) = 0 \ \forall f \in \mathcal{I}\} \) (A.R.-R. Sigurdsson, 2005)

If \(\mathcal{I} = \mathfrak{m}_a \), the maximal ideal at \(a \in D \), then \(G_\mathcal{I}(z) = G(z, a) \).
If \(\mathcal{I} = \mathfrak{m}_{a_1} \cap \ldots \cap \mathfrak{m}_{a_N} \), then \(G_\mathcal{I}(z) = G(z, A) \).
If \(\mathcal{I} = \langle z_1^2, z_2 \rangle \), then \(G_\mathcal{I}(z) = \max\{2 \log |z_1|, \log |z_2|\} + O(1) \).

Question: What happens when \(\mathcal{I} = \mathcal{I}_\varepsilon, \varepsilon \to 0 \)?

We need a notion of convergence of ideals.
Given an ideal \(\mathcal{I} = \langle \psi_1, \ldots, \psi_p \rangle \subset \mathcal{O}(D) \), the Green function \(G_{\mathcal{I}} \) satisfies

\[(dd^c G)^n = 0 \text{ on } D \setminus V(\mathcal{I}), \quad G = \log |\psi| + O(1), \quad G|_{\partial D} = 0,\]

where \(V(\mathcal{I}) = \{ z : f(z) = 0 \ \forall f \in \mathcal{I} \} \) (A.R.- R. Sigurdsson, 2005)

If \(\mathcal{I} = \mathfrak{m}_a \), the maximal ideal at \(a \in D \), then \(G_{\mathcal{I}}(z) = G(z, a) \).

If \(\mathcal{I} = \mathfrak{m}_{a_1} \cap \ldots \cap \mathfrak{m}_{a_N} \), then \(G_{\mathcal{I}}(z) = G(z, A) \).

If \(\mathcal{I} = \langle z_1^2, z_2 \rangle \), then \(G_{\mathcal{I}}(z) = \max\{2 \log |z_1|, \log |z_2|\} + O(1) \).

Question: What happens when \(\mathcal{I} = \mathcal{I}_\varepsilon, \ \varepsilon \to 0 \)?

We need a notion of convergence of ideals.
Given an ideal \(\mathcal{I} = \langle \psi_1, \ldots, \psi_p \rangle \subset \mathcal{O}(D) \), the Green function \(G_{\mathcal{I}} \) satisfies \((dd^c G)^n = 0\) on \(D \setminus V(\mathcal{I}) \), \(G = \log |\psi| + O(1) \), \(G|_{\partial D} = 0 \), where \(V(\mathcal{I}) = \{ z : f(z) = 0 \ \forall f \in \mathcal{I} \} \) (A.R.- R. Sigurdsson, 2005).

If \(\mathcal{I} = \mathfrak{m}_a \), the maximal ideal at \(a \in D \), then \(G_{\mathcal{I}}(z) = G(z, a) \).
If \(\mathcal{I} = \mathfrak{m}_{a_1} \cap \ldots \cap \mathfrak{m}_{a_N} \), then \(G_{\mathcal{I}}(z) = G(z, A) \).
If \(\mathcal{I} = \langle z_1^2, z_2 \rangle \), then \(G_{\mathcal{I}}(z) = \max\{ 2 \log |z_1|, \log |z_2| \} + O(1) \).

Question: What happens when \(\mathcal{I} = \mathcal{I}_\varepsilon \), \(\varepsilon \to 0 \)?

We need a notion of convergence of ideals.
Green functions of ideals

Given an ideal \(\mathcal{I} = \langle \psi_1, \ldots, \psi_p \rangle \subset \mathcal{O}(D) \), the Green function \(G_\mathcal{I} \) satisfies

\[
(dd^c G)^n = 0 \text{ on } D \setminus V(\mathcal{I}), \quad G = \log |\psi| + O(1), \quad G|_{\partial D} = 0,
\]

where \(V(\mathcal{I}) = \{ z : f(z) = 0 \ \forall f \in \mathcal{I} \} \) (A.R.- R. Sigurdsson, 2005)

If \(\mathcal{I} = \mathfrak{m}_a \), the maximal ideal at \(a \in D \), then \(G_\mathcal{I}(z) = G(z, a) \).

If \(\mathcal{I} = \mathfrak{m}_{a_1} \cap \ldots \cap \mathfrak{m}_{a_N} \), then \(G_\mathcal{I}(z) = G(z, \mathcal{A}) \).

If \(\mathcal{I} = \langle z_1^2, z_2 \rangle \), then \(G_\mathcal{I}(z) = \max\{2 \log |z_1|, \log |z_2|\} + O(1) \).

Question: What happens when \(\mathcal{I} = \mathcal{I}_\varepsilon \), \(\varepsilon \to 0 \)?

We need a notion of convergence of ideals.
Convergence of ideals

$\{I_\varepsilon\}_{\varepsilon \in E}$: finite length ideals in $\mathcal{O}(D)$ (i.e., $\dim \mathcal{O}(D)/I < \infty$);
$E \subset \mathbb{C}$, $0 \in \overline{E} \setminus E$.

(i) $\liminf_{\varepsilon \to 0} I_\varepsilon$: ideal consisting of all f such that $I_\varepsilon \ni f_\varepsilon \to f$ locally uniformly on D, as $\varepsilon \to 0$.

(ii) $\limsup_{\varepsilon \to 0} I_\varepsilon$: ideal generated by all f such that $f_j \to f$ locally uniformly, as $j \to \infty$, for some sequence $\varepsilon_j \to 0$ in E and $f_j \in I_{\varepsilon_j}$.

(iii) If the two limits are equal, we say that the family I_ε converges and write $\lim_{\varepsilon \to 0} I_\varepsilon$ for the common values of the limits.

The convergence is equivalent to the one in the topology of the Douady space (determined by flat families.)
Convergence of ideals

\((I_\varepsilon)_{\varepsilon \in E}\): finite length ideals in \(\mathcal{O}(D)\) (i.e., \(\dim \mathcal{O}(D)/I < \infty\));
\(E \subset \mathbb{C}, 0 \in \overline{E} \setminus E\).

(i) \(\liminf_{\varepsilon \to 0} I_\varepsilon\): ideal consisting of all \(f\) such that \(I_\varepsilon \ni f_\varepsilon \to f\) locally uniformly on \(D\), as \(\varepsilon \to 0\).

(ii) \(\limsup_{\varepsilon \to 0} I_\varepsilon\): ideal generated by all \(f\) such that \(f_j \to f\) locally uniformly, as \(j \to \infty\), for some sequence \(\varepsilon_j \to 0\) in \(E\) and \(f_j \in I_{\varepsilon_j}\).

(iii) If the two limits are equal, we say that the family \(I_\varepsilon\) converges and write \(\lim_{\varepsilon \to 0} I_\varepsilon\) for the common values of the limits.

The convergence is equivalent to the one in the topology of the Douady space (determined by flat families.)
Examples of convergence

Example 1, cont’d. 2-point ideals
\[\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \to \mathcal{I} = \langle z_1^2, z_2 \rangle, \] and \[G_{\mathcal{I}_\varepsilon} \to G_{\mathcal{I}}. \]

Example 2, cont’d. 4-point ideals
\[\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \cap m_{(0,\varepsilon)} \cap m_{(\varepsilon,\varepsilon)} \to \mathcal{I} = \langle z_1^2, z_2^2 \rangle, \] and \[G_{\mathcal{I}_\varepsilon} \to G_{\mathcal{I}}. \]

Example 3. 3-point ideals
\[\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \cap m_{(0,\varepsilon)} \to \mathcal{I} = m_0^2 = \langle z_1^2, z_1 z_2, z_2^2 \rangle. \] At the same time, \[\lim G_{\mathcal{I}_\varepsilon} \] exists and does not equal \[G_{\mathcal{I}} \] [MRST].

Question: What is the difference in these examples?
Examples of convergence

Example 1, cont’d. 2-point ideals
\(\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \rightarrow \mathcal{I} = \langle z_1^2, z_2 \rangle \), and \(G_{\mathcal{I}_\varepsilon} \rightarrow G_{\mathcal{I}} \).

Example 2, cont’d. 4-point ideals
\(\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \cap m_{(0,\varepsilon)} \cap m_{(\varepsilon,\varepsilon)} \rightarrow \mathcal{I} = \langle z_1^2, z_2^2 \rangle \), and \(G_{\mathcal{I}_\varepsilon} \rightarrow G_{\mathcal{I}} \).

Example 3. 3-point ideals

\(\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \cap m_{(0,\varepsilon)} \rightarrow \mathcal{I} = m_0^2 = \langle z_1^2, z_1 z_2, z_2^2 \rangle \). At the same time, \(\lim G_{\mathcal{I}_\varepsilon} \) exists and does not equal \(G_{\mathcal{I}} \) [MRST].

Question: What is the difference in these examples?
Examples of convergence

Example 1, cont’d. 2-point ideals
\(\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \rightarrow \mathcal{I} = \langle z_1^2, z_2 \rangle \), and \(G_{\mathcal{I}_\varepsilon} \rightarrow G_{\mathcal{I}} \).

Example 2, cont’d. 4-point ideals
\(\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \cap m_{(0,\varepsilon)} \cap m_{(\varepsilon,\varepsilon)} \rightarrow \mathcal{I} = \langle z_1^2, z_2^2 \rangle \), and \(G_{\mathcal{I}_\varepsilon} \rightarrow G_{\mathcal{I}} \).

Example 3. 3-point ideals
\(\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \cap m_{(0,\varepsilon)} \rightarrow \mathcal{I} = m_0^2 = \langle z_1^2, z_1z_2, z_2^2 \rangle \). At the same time, \(\lim G_{\mathcal{I}_\varepsilon} \) exists and does not equal \(G_{\mathcal{I}} \) [MRST].

Question: What is the difference in these examples?
Examples of convergence

Example 1, cont’d. 2-point ideals
\[\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \rightarrow \mathcal{I} = \langle z_1^2, z_2 \rangle, \text{ and } G_{\mathcal{I}_\varepsilon} \rightarrow G_{\mathcal{I}}. \]

Example 2, cont’d. 4-point ideals
\[\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \cap m_{(0,\varepsilon)} \cap m_{(\varepsilon,\varepsilon)} \rightarrow \mathcal{I} = \langle z_1^2, z_2^2 \rangle, \text{ and } G_{\mathcal{I}_\varepsilon} \rightarrow G_{\mathcal{I}}. \]

Example 3. 3-point ideals
\[\mathcal{I}_\varepsilon = m_0 \cap m_{(\varepsilon,0)} \cap m_{(0,\varepsilon)} \rightarrow \mathcal{I} = m_0^2 = \langle z_1^2, z_1z_2, z_2^2 \rangle. \text{ At the same time, } \lim G_{\mathcal{I}_\varepsilon} \text{ exists and does not equal } G_{\mathcal{I}} \text{ [MRST].} \]

Question: What is the difference in these examples?
Keeping the mass

In Ex. 1 and 2, the total Monge-Ampère masses of G_{I_ε} and G_I coincide:

$$(dd^c G_{I_\varepsilon})^2(D) = 2 = (dd^c G_{I_\varepsilon})^2(D) \quad (\text{Ex. 1})$$

$$(dd^c G_{I_\varepsilon})^2(D) = 4 = (dd^c G_{I_\varepsilon})^2(D) \quad (\text{Ex. 2})$$

In Ex. 3, $(dd^c G_{I_\varepsilon})^2(D) = 3 < (dd^c G_I)^2(D) = 4$.

Why?

Because the limit transition keeps the length of the ideals, but not the (Hilbert-Samuel) multiplicity.

Length $\ell(I) = \dim \mathcal{O}/I$,

Hilbert-Samuel multiplicity $e(I) = \lim_{k \to \infty} n! k^{-n} \ell(I^k)$.

Known: $e(I) \geq \ell(I)$, with the equality iff I is a complete intersection ideal (has precisely n generators).

Relation with Monge-Ampère: $e(I) = (dd^c G_I)^n(D)$.
Keeping the mass

In Ex. 1 and 2, *the total Monge-Ampère masses of* G_{I_ε} *and* G_I *coincide:*

$$\left(dd^c G_{I_\varepsilon}\right)^2(D) = 2 = \left(dd^c G_{I_\varepsilon}\right)^2(D) \quad (\text{Ex. 1})$$

$$\left(dd^c G_{I_\varepsilon}\right)^2(D) = 4 = \left(dd^c G_{I_\varepsilon}\right)^2(D) \quad (\text{Ex. 2})$$

In Ex. 3, $\left(dd^c G_{I_\varepsilon}\right)^2(D) = 3 < \left(dd^c G_I\right)^2(D) = 4.$

Why?

Because the limit transition keeps the *length* of the ideals, but not the *(Hilbert-Samuel) multiplicity.*

Length $\ell(I) = \dim \mathcal{O}/I$,

Hilbert-Samuel multiplicity $e(I) = \lim_{k \to \infty} n! k^{-n} \ell(I^k)$.

Known: $e(I) \geq \ell(I)$, with the equality iff I is a *complete intersection ideal* (has precisely n generators).

Relation with Monge-Ampère: $e(I) = (dd^c G_I)^n(D)$.
Keeping the mass

In Ex. 1 and 2, the total Monge-Ampère masses of $G_{\mathcal{I}_\varepsilon}$ and $G_{\mathcal{I}}$ coincide:

$$(dd^c G_{\mathcal{I}_\varepsilon})^2(D) = 2 = (dd^c G_{\mathcal{I}_\varepsilon})^2(D) \quad \text{(Ex. 1)}$$

$$(dd^c G_{\mathcal{I}_\varepsilon})^2(D) = 4 = (dd^c G_{\mathcal{I}_\varepsilon})^2(D) \quad \text{(Ex. 2)}$$

In Ex. 3, $(dd^c G_{\mathcal{I}_\varepsilon})^2(D) = 3 < (dd^c G_{\mathcal{I}})^2(D) = 4$.

Why?

Because the limit transition keeps the length of the ideals, but not the (Hilbert-Samuel) multiplicity.

Length $\ell(\mathcal{I}) = \dim \mathcal{O}/\mathcal{I}$,

Hilbert-Samuel multiplicity $e(\mathcal{I}) = \lim_{k \to \infty} n! k^{-n} \ell(\mathcal{I}^k)$.

Known: $e(\mathcal{I}) \geq \ell(\mathcal{I})$, with the equality iff \mathcal{I} is a complete intersection ideal (has precisely n generators).

Relation with Monge-Ampère: $e(\mathcal{I}) = (dd^c G_{\mathcal{I}})^n(D)$.
Keeping the mass

In Ex. 1 and 2, the total Monge-Ampère masses of $G_{\mathcal{I}_\varepsilon}$ and $G_{\mathcal{I}}$ coincide:

$$(dd^c G_{\mathcal{I}_\varepsilon})^2(D) = 2 = (dd^c G_{\mathcal{I}_\varepsilon})^2(D) \quad (\text{Ex. 1})$$

$$(dd^c G_{\mathcal{I}_\varepsilon})^2(D) = 4 = (dd^c G_{\mathcal{I}_\varepsilon})^2(D) \quad (\text{Ex. 2})$$

In Ex. 3, $(dd^c G_{\mathcal{I}_\varepsilon})^2(D) = 3 < (dd^c G_{\mathcal{I}})^2(D) = 4$.

Why?

Because the limit transition keeps the length of the ideals, but not the (Hilbert-Samuel) multiplicity.

Length $\ell(\mathcal{I}) = \dim \mathcal{O}/\mathcal{I}$,

Hilbert-Samuel multiplicity $e(\mathcal{I}) = \lim_{k \to \infty} n!k^{-n} \ell(\mathcal{I}^k)$.

Known: $e(\mathcal{I}) \geq \ell(\mathcal{I})$, with the equality iff \mathcal{I} is a complete intersection ideal (has precisely n generators).

Relation with Monge-Ampère: $e(\mathcal{I}) = (dd^c G_{\mathcal{I}})^n(D)$.
Complete intersection case

Proved in [MRST].

Theorem

Let \mathcal{I}_ε be N-point ideals in $\mathcal{O}(D)$, converging to \mathcal{I} with $V(\mathcal{I}) = \{0\}$.

(i) If $G_{\mathcal{I}_\varepsilon}$ converges to a function g, locally uniformly outside 0, then $g \geq G_{\mathcal{I}}$.

(ii) If \mathcal{I} is a complete intersection ideal, then $G_{\mathcal{I}_\varepsilon} \to G_{\mathcal{I}}$, locally uniformly outside 0.

(iii) If \mathcal{I} is not a complete intersection ideal, then $G_{\mathcal{I}_\varepsilon}$ does not converge to $G_{\mathcal{I}}$, even in L^1_{loc}.

\mathcal{I} are complete intersection ideals in Ex. 1 and 2, while not in Ex. 3.

What will be in the incomplete intersection case?
Complete intersection case

Proved in [MRST].

Theorem

Let I_ε be N-point ideals in $\mathcal{O}(D)$, converging to I with $V(I) = \{0\}$.

(i) If G_{I_ε} converges to a function g, locally uniformly outside 0, then $g \geq G_I$.

(ii) If I is a complete intersection ideal, then $G_{I_\varepsilon} \rightarrow G_I$, locally uniformly outside 0.

(iii) If I is not a complete intersection ideal, then G_{I_ε} does not converge to G_I, even in L^1_{loc}.

I are complete intersection ideals in Ex. 1 and 2, while not in Ex. 3.

What will be in the incomplete intersection case?
Weak vs. uniform

Weak \((L^1_{loc})\) convergence of psh functions does not imply their uniform convergence.

But: it does - in the case of \(N\)-poles Green functions!

Theorem

Let \(I_\varepsilon\) be \(N\)-point ideals in \(O(D)\) with \(V(I_\varepsilon) \to \{0\}\). If \(G_{I_\varepsilon} \to g\) in \(L^1_{loc}(D \setminus \{0\})\), then the convergence is actually locally uniform on \(D \setminus \{0\}\). In particular, \((dd^c g)^n = N\delta_0\).

Crucial point of the proof: the family \(G_{I_\varepsilon}\) is shown to be locally equicontinuous, so every sequence \(G_{I_{\varepsilon_k}}\) satisfies local uniform Cauchy criterion.
Weak vs. uniform

Weak (L^1_{loc}) convergence of psh functions does not imply their uniform convergence.

But: it does - in the case of N-poles Green functions!

Theorem

Let \mathcal{I}_ϵ be N-point ideals in $\mathcal{O}(D)$ with $V(\mathcal{I}_\epsilon) \to \{0\}$. If $G_{\mathcal{I}_\epsilon} \to g$ in $L^1_{loc}(D \setminus \{0\})$, then the convergence is actually locally uniform on $D \setminus \{0\}$. In particular, $(dd^c g)^n = N\delta_0$.

Crucial point of the proof: the family $G_{\mathcal{I}_\epsilon}$ is shown to be locally equicontinuous, so every sequence $G_{\mathcal{I}_\epsilon_k}$ satisfies local uniform Cauchy criterion.
Weak vs. uniform

Weak (L_{loc}^1) convergence of psh functions does not imply their uniform convergence.

But: it does - in the case of N-poles Green functions!

Theorem

Let I_ε be N-point ideals in $O(D)$ with $V(I_\varepsilon) \rightarrow \{0\}$. If $G_{I_\varepsilon} \rightarrow g$ in $L_{loc}^1(D \setminus \{0\})$, then the convergence is actually locally uniform on $D \setminus \{0\}$. In particular, $(dd^c g)^n = N \delta_0$.

Crucial point of the proof: the family G_{I_ε} is shown to be locally equicontinuous, so every sequence $G_{I_\varepsilon_k}$ satisfies local uniform Cauchy criterion.
Powers of ideals

Assume that not only \mathcal{I}_ε converge, but also all their powers do:

$$\mathcal{I}_\varepsilon^p \to \mathcal{I}_{(p)}, \quad p = 1, 2, \ldots$$

Since $\mathcal{I}_{(p)} \cdot \mathcal{I}_{(q)} \subset \mathcal{I}_{(p+q)}$ (i.e., $\mathcal{I}_{(p)}$ form a graded family), we have

$$G_{\mathcal{I}_{(p)}} \cdot \mathcal{I}_{(q)} \leq G_{\mathcal{I}_{(p+q)}}.$$

Therefore, the scaled Green functions $\hat{G}_{\mathcal{I}_{(p)}} = p^{-1} G_{\mathcal{I}_{(p)}}$ converge:

Lemma

[RT] There exists the limit

$$V(z) = \lim_{p \to \infty} \hat{G}_{\mathcal{I}_{(p)}}(z) = \sup_p \hat{G}_{\mathcal{I}_{(p)}}(z)$$

whose upper regularization $G_{\mathcal{I}_{\bullet}}(z) = \lim \sup_{y \to z} V(y) \in \text{PSH}(D)$ satisfies

$$(dd^c G_{\mathcal{I}_{\bullet}})^n = N\delta_0.$$

Furthermore, $\hat{G}_{\mathcal{I}_{(p)}} \to G_{\mathcal{I}_{\bullet}}$ in $L^p(\Omega)$ for all $p \in [1, n]$.
Powers of ideals

Assume that not only \mathcal{I}_ε converge, but also all their powers do:

$$\mathcal{I}_\varepsilon^p \to \mathcal{I}_{(p)}, \quad p = 1, 2, \ldots$$

Since $\mathcal{I}_{(p)} \cdot \mathcal{I}_{(q)} \subset \mathcal{I}_{(p+q)}$ (i.e., $\mathcal{I}_{(p)}$ form a graded family), we have

$$G_{\mathcal{I}_{(p)}} \cdot \mathcal{I}_{(q)} \leq G_{\mathcal{I}_{(p+q)}}.$$

Therefore, the scaled Green functions $\hat{G}_{\mathcal{I}_{(p)}} = p^{-1} G_{\mathcal{I}_{(p)}}$ converge:

Lemma

[RT] There exists the limit

$$V(z) = \lim_{p \to \infty} \hat{G}_{\mathcal{I}_{(p)}}(z) = \sup_p \hat{G}_{\mathcal{I}_{(p)}}(z)$$

whose upper regularization $G_{\mathcal{I}_*}(z) = \limsup_{y \to z} V(y) \in \text{PSH}(D)$ satisfies

$$(dd^c G_{\mathcal{I}_*})^n = N\delta_0.$$

Furthermore, $\hat{G}_{\mathcal{I}_{(p)}} \to G_{\mathcal{I}_*}$ in $L^p(\Omega)$ for all $p \in [1, n]$.
Powers of ideals

Assume that not only I_{ε} converge, but also all their powers do:

$$I_{p}^{p} \rightarrow I_{(p)}, \quad p = 1, 2, \ldots$$

Since $I_{(p)} \cdot I_{(q)} \subset I_{(p+q)}$ (i.e., $I_{(p)}$ form a graded family), we have $G_{I_{(p)} \cdot I_{(q)}} \leq G_{I_{(p+q)}}$.

Therefore, the scaled Green functions $\hat{G}_{I_{(p)}} = p^{-1} G_{I_{(p)}}$ converge:

Lemma

[RT] There exists the limit

$$V(z) = \lim_{p \to \infty} \hat{G}_{I_{(p)}}(z) = \sup_{p} \hat{G}_{I_{(p)}}(z)$$

whose upper regularization $G_{I_{\bullet}}(z) = \limsup_{y \to z} V(y) \in \text{PSH}(D)$ satisfies

$$(dd^{c} G_{I_{\bullet}})^{n} = N\delta_{0}.$$

Furthermore, $\hat{G}_{I_{(p)}} \to G_{I_{\bullet}}$ in $L^{p}(\Omega)$ for all $p \in [1, n]$.
Main result

Final ingredient:

Domination principle [R] If \(u, v \in \text{PSH}(D) \) solve the Dirichlet problem \((dd^c u)^n = \alpha \delta_0, u|_{\partial D} = 0, \) and \(u_1 \leq u_2 \) on \(D \), then \(u_1 \equiv u_2 \).

Combining all this, we get the main result:

Theorem

Let \(\{I_\varepsilon\}_{\varepsilon \in E} \) be a family of ideals of holomorphic functions vanishing at distinct points \(a_1(\varepsilon), \ldots, a_N(\varepsilon) \) of a bounded hyperconvex domain \(D \subset \mathbb{C}^n \), where \(E \subset \mathbb{C}, 0 \in \overline{E} \setminus E \). Assume that all \(a_j \to a \in D \) and \(I_\varepsilon(p) \to I(p) \) for all \(p \in \mathbb{Z}_+ \) as \(\varepsilon \to 0 \) along \(E \). Then the Green functions \(G_{I_\varepsilon} \) converge, locally uniformly on \(D \setminus \{0\} \), to the upper regularization of the upper envelope of the scaled Green functions of the limit ideals:

\[
\lim_{\varepsilon \to 0} G_{I_\varepsilon}(z) = \limsup_{y \to z} \sup_{p} p^{-1} G_{I(p)}(y).
\]
Main result

Final ingredient:

Domination principle [R] If \(u, v \in \text{PSH}(D) \) solve the Dirichlet problem \((dd^c u)^n = \alpha \delta_0, \ u|_{\partial D} = 0, \) and \(u_1 \leq u_2 \) on \(D, \) then \(u_1 \equiv u_2. \)

Combining all this, we get the main result:

Theorem

Let \(\{I_\varepsilon\}_{\varepsilon \in E} \) be a family of ideals of holomorphic functions vanishing at distinct points \(a_1(\varepsilon), \ldots, a_N(\varepsilon) \) of a bounded hyperconvex domain \(D \subset \mathbb{C}^n, \) where \(E \subset \mathbb{C}, \) \(0 \in \overline{E} \setminus E. \) Assume that all \(a_j \to a \in D \) and \(I_\varepsilon^p \to I(p) \) for all \(p \in \mathbb{Z}_+ \) as \(\varepsilon \to 0 \) along \(E. \) Then the Green functions \(G_{I_\varepsilon} \) converge, locally uniformly on \(D \setminus \{0\}, \) to the upper regularization of the upper envelope of the scaled Green functions of the limit ideals:

\[
\lim_{\varepsilon \to 0} G_{I_\varepsilon}(z) = \limsup_{y \to z} \sup_{p} p^{-1} G_{I(p)}(y).
\]
Examples

Example 3, cont’d. In 3-point model, $\mathcal{I}_2^2 \to \mathcal{I}_{(2)} = m_0^4 + \langle z_1 z_2 (z_1 + z_2) \rangle$. Since the multiplicity of $\mathcal{I}_{(2)}$ equals 12,

$$\left(dd^c \hat{G}_{\mathcal{I}_{(2)}} \right)^2 (0) = 3,$$

so $G_{\mathcal{I}_\bullet} = \hat{G}_{\mathcal{I}_{(2)}}$ and

$$\lim G_{\mathcal{I}_\varepsilon} = \hat{G}_{\mathcal{I}_{(2)}} = \max\{2 \log |z_1|, 2 \log |z_2|, \frac{1}{2} \log |z_1^2 z_2 + z_1 z_2^2|\} + O(1).$$

Example 4. In a similar model of $n + 1$ points in \mathbb{C}^n,

$$\lim G_{\mathcal{I}_\varepsilon} = \hat{G}_{\mathcal{I}_{(n)}} = \max \left\{ \frac{1}{\# J} \log \left| \left(\sum_{j \in J} z_j \right) \prod_{j \in J} z_j \right|, J \subset \{1, \ldots, n\} \right\} + O(1).$$
Examples

Example 3, cont’d. In 3-point model, \(\mathcal{I}_ε^2 \rightarrow \mathcal{I}_{(2)} = m_0^4 + \langle z_1 z_2 (z_1 + z_2) \rangle \). Since the multiplicity of \(\mathcal{I}_{(2)} \) equals 12,

\[
\left(dd^c \hat{G}_{\mathcal{I}_{(2)}} \right)^2 (0) = 3, \text{ so } G_{\mathcal{I}_ε} = \hat{G}_{\mathcal{I}_{(2)}} \text{ and }
\]

\[
\lim G_{\mathcal{I}_ε} = \hat{G}_{\mathcal{I}_{(2)}} = \max \{ 2 \log |z_1|, 2 \log |z_2|, \frac{1}{2} \log |z_1^2 z_2 + z_1 z_2^2| \} + O(1).
\]

Example 4. In a similar model of \(n + 1 \) points in \(\mathbb{C}^n \),

\[
\lim G_{\mathcal{I}_ε} = \hat{G}_{\mathcal{I}_{(n)}} = \max \left\{ \frac{1}{\# J} \log \left| \frac{1}{J} \sum_{j \in J} z_j \prod_{j \in J} z_j \right| , J \subset \{1, \ldots, n\} \right\} + O(1).
\]
Examples

Example 5. *Hyperplane sections of holomorphic curves*

More generally: a holomorphic curve $\Gamma \in \mathbb{C}^{n+1}$ such that 0 is its singular point.

Let $\mathcal{I}_\varepsilon \subset \mathcal{O}(\mathbb{D}^n)$ be determined by the points $a_k = a_k(\varepsilon) : (a_k, \varepsilon) \in \Gamma$.

Then the limit of the corresponding Green functions G_{I_ε} exists and equals the function G_{I_\bullet}.
Further developments

Mostly by Pascal Thomas and his students/collaborators:

Three- and four-point models with different rates of approaching 0: [MRST], [DT1], [DT2].
Several limit points: [NT].
Questions

1. In the $n + 1$-point example, $G_{I_e} = \hat{G}_{I(t(n))}$ with $t(n) = \text{lcm}\{1, \ldots, n\}$ (in particular, $t(n) \leq n!$). What is (the asymptotic of) the best possible index $p(n)$ such that $G_{I_e} = \hat{G}_{I_{p(n)}}$?

2. Is it always true that $G_{I_e} = \hat{G}_{I_p}$ for some p, at least in the setting of hyperplane sections?

3. What can be said in the case of non-radical ideals I_e whose varieties tend to a single point?
Questions

1. In the $n + 1$-point example, $G_{I_•} = \hat{G}_{I_{(t(n))}}$ with $t(n) = \text{lcm}\{1, \ldots, n\}$ (in particular, $t(n) \leq n!$). What is (the asymptotic of) the best possible index $p(n)$ such that $G_{I_•} = \hat{G}_{I_{(p(n))}}$?

2. Is it always true that $G_{I_•} = \hat{G}_{I_{(p)}}$ for some p, at least in the setting of hyperplane sections?

3. What can be said in the case of non-radical ideals $I_ε$ whose varieties tend to a single point?
Questions

1. In the $n+1$-point example, $G_{I_\bullet} = \hat{G}_{I(t(n))}$ with $t(n) = \text{lcm}\{1, \ldots, n\}$ (in particular, $t(n) \leq n!$). What is (the asymptotic of) the best possible index $p(n)$ such that $G_{I_\bullet} = \hat{G}_{I(p(n))}$?

2. Is it always true that $G_{I_\bullet} = \hat{G}_{I(p)}$ for some p, at least in the setting of hyperplane sections?

3. What can be said in the case of non-radical ideals I_\subset whose varieties tend to a single point?

