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Abstract
A bounded open set with boundary of class C1 which is locally
weakly lineally convex is weakly lineally convex, but, as shown
by Yuriı̆ Zelinskiı̆, this is not true for unbounded domains. The
purpose here is to construct explicit examples, Hartogs
domains, showing this. Their boundary can have regularity C1,1

or C∞. Obstructions to constructing certain smooth domains
will be discussed.
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I am very happy to be here in İstanbul again, and very grateful
to Mert Çağlar for the invitation.

Permit me to mention the four earlier presentation I made here:

2004 September 20 at Sabancı: Holomorphic functions on
discrete sets (see my papers 05-1 and 08-3).

2007 September 19 at Karaköy: Vyacheslav Zakharyuta’s
complex analysis (see my paper 09-1).

2007 September 20 at Sabancı: Three problems in discrete
convexity: local minima, marginal functions, and separating
hyperplanes (see my papers 08-1, 10-3).

2012 April 06 at Karaköy: Asymptotic properties of the
Delannoy numbers and similar arrays (this paper is now
generalized but not yet published).
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1. Introduction
In my paper (1998) I claimed that a differential condition which
I called the Behnke–Peschl condition implies that a connected
open subset of Cn with boundary of class C2 is weakly lineally
convex. The proof in the case of bounded domains relied on a
result by Yužakov and Krivokolesko (1971), proved also in
Hörmander (1994: Proposition 4.6.4), but in the case of
unbounded domains, the proof of their result breaks down.

Yuriı̆ Zelinskiı̆ (2002a, 2002b) published a counterexample in
the case of an unbounded set. His example is not very explicit.
We shall construct here an explicit example—actually a Hartogs
domain, which has the advantage of being easily visualized in
three real dimensions.
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2. Lineal convexity
Definition

A subset of Cn is said to be lineally convex if its complement is
a union of complex affine hyperplanes.

To every set A there exists a smallest lineally convex subset
µ(A) which contains A. Clearly the mapping
µ : P(Cn)→P(Cn), where P(Cn) denotes the family of all
subsets of Cn (the power set), is increasing and idempotent, in
other words an ethmomorphism (morphological filter). It is
also larger than the identity, so that µ is a cleistomorphism
(closure operator) in the ordered set P(Cn).

This kind of complex convexity was introduced by Heinrich
Behnke (1898–1997) and Ernst Ferdinand Peschl (1906–1986).
I learnt about it from André Martineau (1930–1972) when I was
in Nice (1967/68). See Martineau (1966, 1967, 1968).
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Are there lineally convex sets which are not convex? This is
obvious in one complex variable, and from there we can easily
construct, by taking Cartesian products, lineally convex sets in
any dimension which are not convex.

But these sets do not have
smooth boundaries. Hörmander (1994:293, Remark 3)
constructs open connected sets in Cn with boundary of class C2

as perturbations of a convex set. These sets are lineally convex
and close to a convex set in the C2 topology, and therefore
starshaped with respect to some point if the perturbation is
small. Also the symmetrized bidisk
{(z1 + z2,z1z2) ∈ C2; |z1|, |z2|< 1} studied by Agler & Young
(2004) and Pflug & Zwonek (2012) is not convex, but it is
starshaped. So we may ask:

Question

Does there exist a lineally convex set in Cn, n > 2, with smooth
boundary which is not starshaped with respect to any point?
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3. Weak lineal convexity
Definition

An open subset Ω of Cn is said to be weakly lineally convex if
there passes, through every point on the boundary of Ω, a
complex affine hyperplane which does not cut Ω.

From this definition it is clear that every lineally convex open
set is weakly lineally convex. The converse does not hold. This
is not difficult to see if we allow sets that are not connected:
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Example

Given a number c with 0 < c < 1, define an open set Ωc in C2

as the union of the set

{z ∈ C2; |y1|< 1, c < |x1|< 1, |x2|< c, |y2|< c}

with the two sets obtained by permuting x1, x2 and y2. Thus Ωc
consists of six boxes. It is easy to see that it is weakly lineally
convex, but there are many points in its complement such that
every complex line passing through that point hits Ωc .

Any complex line intersects the real hyperplane defined by
y1 = 0 in the empty set or in a real line or in a real
two-dimensional plane, and the three-dimensional set
{z; y1 = 0}∩Ωc is easy to visualize.
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It is less easy to construct a connected set with these properties,
but this has been done by Yužakov & Krivokolesko (1971:325,
Example 2). See also an example due to Hörmander in the book
by Andersson, Passare & Sigurdsson (2004:20–21, Example
2.1.7).

However, the boundary of the constructed set is not of class C1,
and this is essential. Indeed, Yužakov & Krivokolesko
(1971:323, Theorem 1) proved that a connected bounded open
set with “smooth” boundary is locally weakly lineally convex if
and only if it is lineally convex. It is then even C-convex
(1971:324, Assertion). See also Corollary 4.6.9 in Hörmander
(1994), which states that a connected bounded open set with
boundary of class C1 is locally weakly lineally convex if and
only if it is C-convex (and every C-convex open set is lineally
convex).
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There cannot be any cleistomorphism connected with the notion
of weak lineal convexity for the simple reason that the property
is defined only for open sets. We might therefore want to define
weak lineal convexity for arbitrary sets. We may ask:

Question

Is there a reasonable definition of weak lineal convexity for all
sets which keeps the definition for open sets and is such that
there is a cleistomorphism associating to any A⊂ Cn the
smallest set which contains A and is weakly lineally convex?
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For an open set Ω with boundary of class C1, there is, at any
given boundary point p, only one possible complex hyperplane
that might be in the complement of the set: The complex
tangent plane at p, Y = p + TC(p). That Y does not meet Ω is
equivalent to L⊂ {Ω for all complex lines L contained in Y .
This is convenient, because it allows us to work with
1-dimensional complex subspaces rather than
(n−1)-dimensional complex subspaces.

The operation L 7→ L∩Ω associating to a complex line L its
intersection with an open set Ω has continuity properties which
seem to be highly relevant for weak lineal convexity.

Question

Is this worth studying?
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4. Local weak lineal convexity
Definition

We shall say that an open set Ω⊂ Cn is locally weakly lineally
convex if for every point p there exists a neighborhood V of p
such that Ω∩V is weakly lineally convex.

Obviously, a weakly lineally convex open set has this property,
but the converse does not hold, which is obvious for sets which
are not connected: Take the union of two open balls whose
closures are disjoint. Also for connected sets the converse does
not hold:
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Example (Kiselman 1996, Example 3.1.)
Define first

Ω+ = {(z, t); |z|< 1 and |t|< |z−2|};

Ω− = {(z, t); |z|< 1 and |t|< |z + 2|},

and then

Ω0 = Ω+∩Ω−; Ωr
0 = {(z, t) ∈ Ω0; |t|< r},

where r is a constant with 2 < r <
√

5. All these sets are
lineally convex. The two points (±i,

√
5) belong to the

boundary of Ω0; in the three-dimensional space of the variables
(Rez, Imz, |t|), the set representing Ω0 has two peaks, which
have been truncated in Ωr

0.
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We now define Ωr by glueing together Ω0 and Ωr
0: Define Ωr as

the subset of Ω0 such that (z, t) ∈ Ωr
0 if Imz > 0; we truncate

only one of the peaks of Ω0.

The point (i− ε, r) for a small positive ε belongs to the
boundary of Ωr and the tangent plane at that point has the
equation t = r and so must cut Ωr at the point (−i + ε, r).
Therefore Ωr is not lineally convex, but it agrees with the
lineally convex sets Ω0 and Ωr

0 when Imz < δ and Imz >−δ,
respectively, for a small positive δ. The set has Lipschitz
boundary; in particular it is equal to the interior of its closure.
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An open connected Hartogs set in C2 which is locally weakly
lineally convex but not weakly lineally convex. Coordinates

(z, t) ∈ C2; (x ,y , |t|) ∈ R3. (Graphics by Erik Melin.)
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In this example it is essential that the boundary is not smooth.

Zelinskiı̆ (1993:118, Example 13.1) constructs an open set
which is locally weakly lineally convex but not weakly lineally
convex. The set is not equal to the interior of its closure.

Definition

Let us say that an open set Ω is locally weakly lineally convex
in the sense of Yužakov and Krivokolesko (1971:323) if for
every boundary point p there exists a complex hyperplane Y
passing through p and a neighborhood V of p such that Y does
not meet V ∩Ω.

Zelinskiı̆ (1993:118, Definition 13.1) uses this definition and
calls the property lokal~a� line�na� vypuklost~, thus a
property which is strictly weaker than the local weak lineal
convexity defined here as we shall see.
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Hörmander (1994: Proposition 4.6.4) and Andersson et al.
(2004: Proposition 2.5.8) use this property only for open sets
with boundary of class C1. Then the hyperplane Y is unique.

For all open sets, local weak lineal convexity obviously implies
local weak lineal convexity in the sense of Yužakov and
Krivokolesko. In the other direction, Hörmander’s Proposition
4.6.4 shows that for bounded open sets with boundary of class
C1, local weak lineal convexity in the sense of Yužakov and
Krivokolesko implies local weak lineal convexity (even weak
lineal convexity if the set is connected).
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Nikolov (2012: Proposition 3.7.1) and Nikolov et al.
(2010: Proposition 3.3) have a local result in the same direction:
If Ω has a boundary of class Ck , 2 6 k 6 ∞, and Ω∩B<(p, r),
where p is a given point, is locally weakly lineally convex in the
sense of Yužakov and Krivokolesko at all points near p, then
there exists a C-convex open set ω (hence lineally convex) with
boundary of class Ck such that ω∩B<(p, r ′) = Ω∩B<(p, r ′) for
some positive r ′.
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However, in general the two properties are not equivalent:

Example

There exists a bounded connected open set in C2 with Lipschitz
boundary which is locally weakly lineally convex in the sense of
Yužakov and Krivokolesko but not locally weakly lineally convex.
While Ωr is locally weakly lineally convex for 2 < r <

√
5, the set

Ω2 for r = 2 is not locally weakly lineally convex: The point (0,2)
does not have a neighborhood with the desired property. But it
does satisfy the property of Yužakov and Krivokolesko.
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5. The Behnke–Peschl and Levi
conditions
The real Hessian of a C2 function f is

HR
f (p;s) = ∑ fxj xk (p)sjsk , p ∈ Rm, s ∈ Rm.

The complex Hessian is

HC
f (p; t) = ∑ fzj zk (p)tj tk , p ∈ Cn, t ∈ Cn.

The Levi form is

Lf (p; t) = ∑ fzj z̄k (p)tj t̄k , p ∈ Cn, t ∈ Cn.

If we let the relation between the real s and the complex t be the
usual one:

tj = s2j−1 + is2j , j = 1, . . . ,n, s ∈ Rn, t ∈ Cn,

we get
1
2HR

f (p;s) = ReHC
f (p; t)+Lf (p; t), p ∈Cn, s ∈R2n, t ∈Cn.
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Let now Ωf be the set of all points where f is negative. We
should assume that ‖grad f‖+ |f |> 0 everywhere, so that the
boundary of Ωf is of class C2.

The complex tangent space TC(p) at a point p ∈ ∂Ωf is defined
by ∑ fzj (p)tj = 0; the real tangent space TR(p) by
Re ∑ fzj (p)tj = 0.

Definition

An open set Ω with boundary of class C2 is said to satisfy the
Behnke–Peschl condition if, for every point p ∈ ∂Ωf , we have

1
2HR

f (p;s) = ReHC
f (p; t) + Lf (p; t) > 0 when t ∈ TC(p),

i.e., when ∑ fzj (p)tj = 0. We say that it satisfies the strong
Behnke–Peschl condition if, for t ∈ TC(p)r{0}, we have
strict inequality.
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The condition says that the restriction of the real Hessian to the
complex tangent space at any boundary point shall be positive
semidefinite; in the strong case, positive definite.

Because of the different homogeneity of HC and L, the
inequality is equivalent to L > |HC|.
In my paper (1998) I proved that a bounded connected open set
with boundary of class C2 is weakly lineally convex if it
satisfies the Behnke–Peschl condition.

That this condition is necessary for weak lineal convexity was
known since Behnke and Peschl (1935); the sufficiency was
unknown.

I stated the result also for unbounded connected open sets with
C2 boundary. The proof relied on Proposition 4.6.4 in
Hörmander (1994), which is stated there for bounded connected
open sets with boundary of class C1; I wrote (1998:4) that the
assumption that the domain be bounded is not needed for the
conclusion.
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We also recall the following classical definition.

Definition

An open set Ω with boundary of class C2 is said to satisfy the
Levi condition if, for every point p ∈ ∂Ωf , we have

Lf (p; t) > 0 when t ∈ TC(p),

i.e., when ∑ fzj (p)tj = 0. We say that it satisfies the strong Levi
condition if, for t ∈ TC(p)r{0}, we have strict inequality.

The inequality Lf > |HC|> 0 shows that the Behnke–Peschl
condition implies the Levi condition.
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6. Yužakov and Krivokolesko:
Passage from local to global
Let us quote the part of Proposition 4.6.4 in Hörmander (1994)
which is important for us:

Proposition

Let Ω⊂ Cn be a bounded connected open set with boundary of
class C1 and assume that Ω is locally weakly lineally convex in
the sense of Yužakov and Krivokolesko. Then Ω is weakly
lineally convex.

The result was proved by Yužakov & Krivokolelsko (1971)
under the condition that the boundary is “smooth.” In my paper
(1998) I needed this result for boundaries of class C2, and
carelessly claimed that it is true then also if the set is
unbounded.
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7. Zelinskiı̆’s example of 2002
In a paper published in 2002, Zelinskiı̆ (2002a, 2002b) gave a
counterexample to the result I used for unbounded domains:
There exists an unbounded open connected set in C2 which is
locally weakly lineally convex but not weakly lineally convex.

In this paper, Zelinskiı̆ first defines a domain D1 ⊂ C as follows.
D1 is the set of all z ∈ C such that[
(|z|2 < 2)∧ (x < 0)

]
∨
[
x2 + (y−1)2 < 1

]
∨
[
x2 + (y + 1)2 < 1

]
,

where z = x + iy , (x ,y) ∈ R2 . He then says (2002b:346): “It is
obvious that this domain is locally convex and smooth at all
points of the boundary, except the origin (0,0).” This is not
true, since the points (−1,1) and (−1,−1) are also points
where the boundary is not smooth and not convex.
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However, I guess that this is due to a typo, and that the author
means instead D1 as the set of all z ∈ C such that

[(|z|< 2)∧ (x < 0)]∨
[
x2 + (y−1)2 < 1

]
∨
[
x2 + (y + 1)2 < 1

]
.

In the sequel I shall use this set.

Zelinskiı̆ considers the set G = D1×D<(0,1), which is lineally
convex since it is the Cartesian product of two lineally convex
sets. It is, however, not C-convex, since the intersection with the
complex line of equation 2z1−3z2−4 = 0 is not connected.
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convex since it is the Cartesian product of two lineally convex
sets. It is, however, not C-convex, since the intersection with the
complex line of equation 2z1−3z2−4 = 0 is not connected.
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Under inversion of z = x + iy we get a set D1
inv which has

boundary of class C1,1, since the only point where the boundary
is not of class C1,1 is thrown to infinity:

D1
inv = {z; 1/z ∈ D1}

=
{

z ∈ C; |Imz|> 1
2 or

[
Rez < 0 and |z|> 1

2

]}
.

The complement of this set is convex.
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The set D1
inv.
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Zelinskiı̆ considers the set G = D1×D<(0,1) and
approximations Gε of G from the inside. Their boundaries are
of class C1,1 at all points of the boundary except at
D0 = {(0,0)}×D<(0,1) and are locally convex at these points.
Then he applies a projective mapping (not specified) so that the
straight line {0}×C is mapped to infinity. The resulting
domains Wε then have boundaries of class C1,1. For small ε

(how small is not specified) they cannot be C-convex, nor
weakly lineally convex, while they are locally weakly lineally
convex.

46



8. A new example
We shall construct explicit Hartogs domains here with the
properties mentioned in Zelinskiı̆’s example.

Example

Define a function ϕ� : C→ R by

ϕ
�(z1) =


−x2

1 − y2
1 , x1 6 0 or y1 6 0;

−x2
1 + y2

1 , 0 6 y1 6 x1;

x2
1 − y2

1 , 0 6 x1 6 y1.

Then
Ωϕ� = {z ∈ C2; 1 + ϕ

�(z1) + |z2|2 < 0}

has boundary of class C1,1 and is locally weakly lineally convex
but not weakly lineally convex, since the tangent plane at the
boundary point p = (2 + i,

√
2) passes through

q = (q1,0) = ((2 + 5i)/3,0) ∈ Ωϕ� .
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The set Ωϕ� ∩{z ∈ C2; z2 = 0}.
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The set in this example is not of class C2 at the points where
y1 = 0, x1 > 0 or x1 = 0, y1 > 0, but we can make it smoother.

We note that the function ϕ� is homogeneous of degree two:

ϕ
�(z1) = ϕ

�(|z1|eit) = |z1|2ψ(t), z1 ∈ C, t ∈ R,

and it is therefore natural to ask whether there are smooth
homogeneous functions with the good properties—or even an
analytic homogeneous function.
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Four questions

We ask for functions ϕ : C→ R which yield a locally weakly
lineally convex domain which is not weakly lineally convex in
four different cases.

1.1. Is there a C∞ function ϕ with these properties?
1.2. Is there a homogeneous C∞ function ϕ with these

properties?
2.1. Is there an analytic function ϕ with these properties?
2.2. Is there a homogeneous analytic function ϕ with these

properties?

As we shall see, the answer to the first question is in the
affirmative. But the answer to Question 1.2 is in the negative.
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Example. Now define ϕ? : C→ R by

ϕ
?(z1) =

{
−x2

1 + χ(y1), x1 > y1;

−y2
1 + χ(x1), x1 6 y1,

where χ ∈ C∞(R) is a function of one real variable such that χ′

is convex and which satisfies

χ(y1) =

{
−y2

1 + ρ, y1 6−1
2 ;

y2
1 + σ, y1 > 1

2 ,

where σ−ρ + 1
2 = χ(1

2)−χ(−1
2).
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The convexity of χ′ implies that 2|y1|6 χ′(y1) 6 max(2|y1|,1)
with equality to the left for |y1|> 1

2 . This implies that we must
have 1

2 < χ(1
2)−χ(−1

2) < 1, and we can actually choose χ so
that χ(1

2)−χ(−1
2) is any given number in that interval. For

definiteness we can choose ρ =−1
4 , σ = 0, χ(1

2)−χ(−1
2) = 3

4 ,
which implies that the part where z1 is in the first quadrant is
unchanged compared to Ωϕ� . We can for example choose χ as a
suitable third primitive of

χ
′′′(y1) = C exp(1/(y1− c)−1/(y1 + c)), −c < y1 < c,

for a number c, 0 < c 6 1
2 and a positive constant C, taking

χ′′′(y1) equal to zero when |y1|> c.
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Then
Ωϕ? = {z ∈ C2; 1 + ϕ

?(z1) + |z2|2 < 0}

has boundary of class C∞ and is locally weakly lineally convex
but not lineally convex, since the tangent plane at the boundary
point p = (2 + i,

√
2) passes through

q = (q1,0) = ((2 + 5i)/3,0) ∈ Ωϕ? .
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The properties mentioned in these examples will follow from
the next proposition.

Proposition

Let ϕ : C→ R be a function of class Ck , k = 2,3, . . . ,∞,ω, and
define an open set in C2 as

Ωϕ = {z ∈ C2; 1 + ϕ(z1) + |z2|2 < 0}.

We assume that ϕz1 6= 0 wherever ϕ =−1, and that

(−ϕ−1)(|ϕz1z1|−ϕz1z̄1) 6 |ϕz1|2 in the set where −ϕ−1 > 0.

Then Ωϕ has boundary of class Ck and satisfies the
Behnke–Peschl condition at every boundary point. If the
inequality is strict at a certain point, we get the strong
Behnke–Peschl condition at that point.
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Proof. With f (z) = 1 + ϕ(z1) + |z2|2 we get

fz1(z) = ϕz1(z1), fz2(z) = z̄2.

In view of our assumption, the gradient of f cannot vanish at a
boundary point, so smoothness is inherited by the boundary.

The tangent plane at a boundary point p has the equation

ϕz1(p1)(z1−p1) + p̄2(z2−p2) = 0.

It hits the plane z2 = 0 at the point

q = (q1,0) = (p1 + |p2|2/ϕz1(p1),0).

We get fz1z1 = ϕz1z1 , fz1z2 = fz2z2 = 0; thus
HC

f (p; t) = ϕz1z1(p1)t2
1 .

Similarly we get fz1z̄1 = ϕz1z̄1 , fz1z̄2 = 0, fz2z̄2 = 1; thus

Lf (p; t) = ϕz1z̄1(p1)|t1|2 + |t2|2.
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In the tangent space we have t1 =−t2p̄2/ϕz1(p1), which
inserted into 1

2HR
f = ReHC

f + Lf yields

Re
p̄2

2ϕz1z1(p1)

ϕz1(p1)2 t2
2 +
|p2|2ϕz1z̄1(p1)

|ϕz1(p1)|2
|t2|2 + |t2|2.

This expression majorizes

|p2|2

|ϕz1(p1)|2
(
ϕz1z̄1(p1)−|ϕz1z1(p1)|

)
|t2|2 + |t2|2.

Here, as we know, ϕz1(p1) 6= 0 and |p2|2 =−ϕ(p1)−1 > 0. We
see that the condition on ϕ implies that this quantity is
nonnegative; if the condition holds with strict inequality we
conclude as indicated.
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Corollary

Let ϕ have the form ϕ(z1) =−x2
1 + χ(y1) for x1 > y1 and

ϕ(z1) =−y2
1 + χ(x1) for y1 > x1. We assume that χ(y1) =−y2

1
for y1 6−1

2 . We also assume that χ ∈ Ck (R), k > 2, with
−2 6 χ′′ and such that χ(y1) >−1 when χ′(y1) = 0. Then the
conclusion of the proposition holds under the assumption

1
4χ
′(y1)2 + χ(y1) + 1 > 0, y1 ∈ R.
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The function ϕ� is not of class C1,1 at the points where x1 = y1,
x1 > 0, but this is of no consequence, since these points do not
belong to the closure of the set it defines.

We note that the tangent plane at a boundary point p with
Rep1 6 0 or Imp1 6 0 is contained in the complement of Ωϕ�;
in particular, it hits the plane z2 = 0 at the point
q = (p1/|p1|2,0) /∈ Ωϕ� . We also note that the part of Ωϕ� where
0 < x1 < y1 is convex, so any tangent plane does not cut this
part. Similarly, the part where 0 < y1 < x1 is convex. Therefore
Ω�ϕ is the union of three lineally convex sets—actually two,
since we can take one open set to be given by y1 < x1 or y1 < 0,
and the other by x1 < y1 or x1 < 0.
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When x1 < 0 or y1 < 0 we get ϕ�z1
(z1) =−z̄1, ϕ�z1z1

(z1) = 0,
ϕ�z1z̄1

(z1) =−1; when 0 < y1 6 x1 we have ϕ�z1
(z1) =−z1,

ϕ�z1z1
(z1) =−1 and ϕ�z1z̄1

(z1) = 0; when 0 < x1 6 y1 we have
ϕ�z1

(z1) = z1, ϕ�z1z1
(z1) = 1 and ϕ�z1z̄1

(z1) = 0. In all three cases
|ϕz1z1|−ϕz1z̄1 = 1. An application of the proposition now gives
the result, except that it does not give anything at the
exceptional points, where the function is not of class C∞, i.e.,
those with y1 = 0, x1 > 0 or x1 = 0, y1 > 0. However, we have
already seen that at these points, the tangent plane does not cut
Ωϕ� .
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The defining function 1− x2
1 + χ(y1) + |z2|2 has nonvanishing

gradient everywhere since χ′ > 0 everywhere. Smoothness
follows.

The function ϕ? is not of class C∞ in the set where x1 = y1,
x1 > 0, but again this is unimportant since these points do not
belong to the closure of Ωϕ? . An application of the corollary
now gives the result. In fact, with the choice of ρ =−1

4 , σ = 0,
we need only note that χ(y1) >−y2

1 − 1
4 everywhere, and that

χ′(y1) > 2|y1|, so that

1
4χ
′(y1)2 + χ(y1) + 1 > 3

4 > 0,

thus with strict inequality.
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Now for an impossibility result! (Found in Singapore in
December 2013.)

Proposition

Let
Ωϕ = {z ∈ C2; 1 + ϕ(z1) + |z2|2 < 0},

where ϕ 6 0 is homogeneous of degree two and of class C2

where it is negative. Then either ϕ is constant and Ωϕ is lineally
convex; or ϕ is not constant and Ωϕ is not connected.

A striking contrast between C1,1 and C2.
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Proof. For functions ϕ : C→ R which are homogeneous of
degree two, i.e., of the form ϕ(z1) = |z1|2g(t), z1 = |z1|eit ∈ C,
t ∈ R, the condition on ϕ takes the form

(−r2g−1)

[
−g +

√
(1

4g′′)2 + (1
2g′)2− 1

4g′′
]
6 r2(g2 + 1

4g′2),

where −r2g−1 > 0; equivalently

4g + (−r2g−1)
[√

g′′2 + 4g′2−g′′
]
6 r2g′2.

From this we obtain, if we divide by r2 and let r tend to +∞,

(−g)
[√

g′′2 + 4g′2−g′′
]
6 g′2.

But this condition is also sufficient, which follows on
multiplication by r2 and adding the trivial inequality
4g−

[√
g′′2 + 4g′2−g′′

]
6 0.
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To get rid of the square root we rewrite the condition as

g′2
(
g′2 + 2(−g)g′′−4g2)> 0,

where the left-hand side is of degree four.

Now if we take g =−h2, where h > 0 and h is of class C2

where it is positive, we get an inequality of degree eight but
which is easy to analyze:

h5h′2
(
h + h′′

)
6 0.

Thus, for each t such that h(t) > 0, either h′(t) = 0 or
h(t) + h′′(t) 6 0. If h′ is zero everywhere, it is known that Ωϕ is
lineally convex, in particular weakly lineally convex. Wherever
h is positive and h′ is nonzero we get h + h′′ 6 0. This implies
that any local maximum of h is isolated and that there can only
be one point where the maximum is attained. Hence, unless h′

vanishes everywhere, h + h′′ 6 0 everywhere. We define
k = h + h′′ 6 0 and obtain for any a ∈ R

h(t) = h(a)cos(t−a) + h(a)
∫ t

a
sin(t− s)k(s)ds, t ∈ R.
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The function h attains its maximum at some point which we
may call a and the formula then shows that
h(t) 6 h(a)cos(t−a) for all t with a 6 t 6 t + π/2. In
particular, h must have a zero t0 in the interval ]a,a + π/2]. By
symmetry, h has a zero t1 also in the interval [a−π/2,a[, hence
at least two zeros in a period. This means that Ω is not
connected, since the union of the rays argz1 = t0 and argz1 = t1
divides the z1-plane.
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It is of interest to understand in what way the proof of
Hörmander’s Proposition 4.6.4 quoted above breaks down in
the unbounded case. An important step in the proof is to see
that, if we have a continuous family (Lt)t∈[0,1] of complex lines,
the set T of parameter values t such that Lt ∩Ω is connected is
both open and closed. Thus, if 0 ∈ T , then also 1 ∈ T . We shall
see that closedness is no longer true for the sets in the two
examples.

Example
Define complex lines

Lt = {z ∈ C2; z2 = t(z1−1− i)}, t ∈ [0,1],

which all pass through (1 + i,0) /∈ Ωϕ? . Then Lt ∩Ωϕ? is
connected for 0 6 t < 1 while L1∩Ωϕ? is not.
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We shall first see that the real hyperplane given by y1 = x1
divides L1∩Ωϕ? into two parts. If y1 = x1 and x1 > 0, then z
does not belong to Ωϕ? . If y1 = x1, x1 < 0, and z ∈ Lt ∩Ωϕ? , we
shall reach a contradiction. In fact, if z2 = z1−1− i and
z ∈ Ωϕ? , then

|z1−1− i|2 = |x1−1|2|1 + i|2 <−ϕ
?(z1)−1 = 2x2

1 −ρ−1,

which implies that 4x1 > 3 + ρ = 23
4 > 0, contradicting the

assumption x1 < 0. We also need to know that the two parts are
not empty. This is clear, since (2,1− i) and (2i, i−1) both
belong to L1∩Ωϕ? , the first with y1 < x1, the second with
y1 > x1.
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Next, we shall see that Lt ∩Ωϕ? is connected when 0 6 t < 1.
Given t such that 0 6 t < 1, we fix an r such that the point z
with z1 =−r − ir and z2 = t(z1−1− i) =−t(1 + i)(1 + r)
belongs to Lt ∩Ωϕ? . This is possible for a large r . But then also
all points z ∈ Lt with |z1|=

√
2r and x1 6 0 or y1 6 0 belong to

Ωϕ? . Thus the circular arc Γ so described lies in Lt ∩Ωϕ? . Now a
arbitrary point a ∈ Lt ∩Ωϕ? can be joined to a point a′ ∈ Γ
contained in Lt ∩Ωϕ? by a straight line segment. We take
a′ =
√

2ra/|a1| if Rea1 6 0 or Ima1 6 0; a′ =
√

2r if a ∈ Ωϕ?

and 0 < Ima1 < Rea1; and a′ =
√

2 ir if a ∈ Ωϕ? and
0 < Rea1 < Ima1.
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Another method is to construct a set from its complement. We
know that the complement of any union of complex
hyperplanes is lineally convex. We define

Lc,β = {z ∈ C2; z1− c + βz2 = 0},
a complex line which passes through (c,0), and Ω as the
complement of the union ⋃

c /∈ω

|β|6ψ(c)

Lc,β.

Here ψ : C→ R is a function like ψ(c) = min(d(c,ω),1),
where d(c,ω) = infz∈ω(‖c− z‖2) is the distance from c to ω.

We now take ω as the set of all z1 such that y1 > x1 and (z1,0)
belongs to Ωϕ? . The set so constructed is lineally convex. We
then take the union of this set and the set where x1 and y1 have
been permuted. The new set is locally weakly lineally convex
but not lineally convex.

A suitable modification of this set has a smooth boundary.
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9. A set which is not starshaped
In answer to an earlier question we mention a modification of
the set Ωϕ� which is not starhaped.

Example. (Found on 2014 February 15.) Define ϕ] : C→ R by

ϕ
](z1) =

{
−x2

1 − y2
1 , x1 + y1 6 0;

−1
2(x1− y1)2, x1 + y1 > 0.

Then
Ωϕ] = {z ∈ C2; 1 + ϕ

](z1) + |z2|2 < 0}

has boundary of class C1,1 and is lineally convex, but it is not
starshaped with respect to any point.

Can conceivably be modified to have a boundary of class C∞.

Unbounded! What about bounded?
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The set Ωϕ] ∩{z ∈ C2; z2 = 0}.
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10. Cutting off domains is sometimes
possible
A convex unbounded domain can always be cut off to yield a
bounded convex domain, and the smoothness of the boundary
can be preserved. However, it seems to be possible that there is
a larger class of unbounded domains which satisfy the
Behnke–Peschl condition and allows cutting off so that the
Behnke–Peschl condition as well as the smoothness are
preserved. . . .
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