DYNAMIC RAYS AND LANDING BEHAVIORS

Aslı Deniz

February 20, 2015
What is holomorphic dynamics?
The field of holomorphic dynamics can be described as the study of long term behavior of holomorphic maps under iteration.
What is holomorphic dynamics?

The field of holomorphic dynamics can be described as the study of long term behavior of holomorphic maps under **iteration**.

- **iteration**: action of applying the map repeatedly
What is holomorphic dynamics?

The field of holomorphic dynamics can be described as the study of long term behavior of holomorphic maps under iteration.

- **iteration**: action of applying the map repeatedly

 domain \rightarrow dynamical plane
The field of holomorphic dynamics can be described as the study of long term behavior of holomorphic maps under iteration.

- **iteration**: action of applying the map repeatedly

 domain \rightarrow dynamical plane

For a holomorphic map f, dynamical plane consists of two totally invariant sets:
The field of holomorphic dynamics can be described as the study of long term behavior of holomorphic maps under iteration.

- **iteration**: action of applying the map repeatedly

 domain \rightarrow dynamical plane

For a holomorphic map f, dynamical plane consists of two totally invariant sets:

- the set of points with stable behavior \rightarrow **Fatou set** ($\mathcal{F}(f)$)
The field of holomorphic dynamics can be described as the study of long term behavior of holomorphic maps under iteration.

- **Iteration**: action of applying the map repeatedly

 \[
 \text{domain} \rightarrow \text{dynamical plane}
 \]

For a holomorphic map \(f \), dynamical plane consists of two totally invariant sets:

- the set of points with stable behavior \(\rightarrow \text{Fatou set} \ (\mathcal{F}(f)) \)
- the set of points with non-stable behavior \(\rightarrow \text{Julia set} \ (\mathcal{J}(f)) \)
What is holomorphic dynamics?

The field of holomorphic dynamics can be described as the study of long term behavior of holomorphic maps under iteration.

- **iteration**: action of applying the map repeatedly

 domain \rightarrow dynamical plane

For a holomorphic map f, dynamical plane consists of two totally invariant sets:

- the set of points with stable behavior \rightarrow **Fatou set** ($\mathcal{F}(f)$)
- the set of points with non-stable behavior \rightarrow **Julia set** ($\mathcal{J}(f)$)

Escaping set:

$\mathcal{I}(f) := \{ z; \ f^n(z) \rightarrow \infty \}.$
Rays for Polynomials
Outline

- Rays for Polynomials
- Rays for Transcendental Entire Functions
Outline

- Rays for Polynomials
- Rays for Transcendental Entire Functions
 - A Landing Theorem
RAYS FOR POLYNOMIALS
Quadratic family
Quadratic family

\[Q_c(z) = z^2 + c, \quad c \in \mathbb{C}. \]
Quadratic family

\[Q_c(z) = z^2 + c, \quad c \in \mathbb{C}. \]
Quadratic family

\[Q_c(z) = z^2 + c, \quad c \in \mathbb{C}. \]
Quadratic family

\[Q_c(z) = z^2 + c, \quad c \in \mathbb{C}. \]

Mandelbrot Set

\[\mathcal{J}(Q_0) = \partial \mathcal{I}(Q_0) \]

Dynamical plane for \(Q_0 \)
$$\mathcal{J}(Q_c) = \partial \mathcal{I}(Q_c)$$
Quadratic family

\[J(Qc) = \partial I(Qc) \]

Douady’s rabbit
Quadratic family

\[\mathcal{J}(Q_c) = \partial \mathcal{I}(Q_c) \]

Douady’s rabbit

Aim: To understand the topology of the Julia set..
Exploring the Julia set

In the escaping sets the dynamics are "similar"...
In the escaping sets the dynamics are "similar"...
Exploring the Julia set

In the escaping sets the dynamics are "similar"...
Exploring the Julia set

In the escaping sets the dynamics are "similar"...
Exploring the Julia set

Dynamic rays with period 3
Exploring the Julia set

Dynamic rays with period 3
Exploring the Julia set

DYNAMIC RAYS ARE WAYS TO REACH THE JULIA SET...
Exploring the Julia set

Dynamic rays are ways to reach the Julia set...

Theorem (Sullivan-Douady-Hubbard)

If the critical value has bounded orbit, then every periodic ray lands at a periodic point.
RAYS FOR TRANSCENDENTAL ENTIRE FUNCTIONS
Exponential dynamics
Theorem (Eremenko-Lyubich)

Suppose f is a transcendental entire function with bounded singular set. Then

$$\mathcal{J}(f) = \mathcal{I}(f).$$

Exponential dynamics
QUESTION: DO ESCAPING POINTS FORM CURVES?
QUESTION: DO ESCAPING POINTS FORM CURVES?

ANSWER: For some classes of functions..YES!
QUESTION: DO ESCAPING POINTS FORM CURVES?

ANSWER: For some classes of functions..YES!

Theorem (Rottenfusser, Rückert, Rempe, Schleicher)

Dynamic rays exist for functions of finite order with bounded singular sets, or finite composition of such functions.
QUESTION: DO ESCAPING POINTS FORM CURVES?

ANSWER: For some classes of functions..YES!

Theorem (Rottenfusser, Rückert, Rempe, Schleicher)

Dynamic rays exist for functions of finite order with bounded singular sets, or finite composition of such functions.

Call it R^3S class...
Exponential dynamics
Transcendental Dynamics

Exponential dynamics
Landing theorem via hyperbolic geometry
Set post-singular set:

\[P = \bigcup_{n} f^n(S). \]
Set post-singular set:

\[P = \bigcup_{n} f^n(S). \]

Theorem (D.)

For \(f \in R^3S \) with bounded post-singular set, every periodic dynamic ray lands at a periodic point.
Landing theorem via hyperbolic geometry

Set post-singular set:

\[P = \bigcup_{n} f^n(S). \]

Theorem (D.)

For \(f \in R^3 S \) with bounded post-singular set, every periodic dynamic ray lands at a periodic point.

- **Tools:** Standard hyperbolic geometry results
Landing theorem via hyperbolic geometry

Set post-singular set:

\[P = \bigcup_{n} f^n(S). \]

\[\text{Theorem (D.)} \]

For \(f \in R^3S \) with bounded post-singular set, every periodic dynamic ray lands at a periodic point.

Tools: Standard hyperbolic geometry results
- Schwarz-Pick’s Lemma
- Comparison Principle
Landing theorem via hyperbolic geometry

Set post-singular set:

\[P = \bigcup_{n} f^n(S). \]

Theorem (D.)

For \(f \in \mathbb{R}^3S \) with bounded post-singular set, every periodic dynamic ray lands at a periodic point.

- **Tools:** Standard hyperbolic geometry results
 - Schwarz-Pick’s Lemma
 - Comparison Principle
- **Strategy:** Perform successive pullbacks of a fundamental segment and see in the limit it degenerates to a single point.
Landing theorem via hyperbolic geometry

Set post-singular set:

\[P = \bigcup_{n} f^n(S). \]

Theorem (D.)

For \(f \in R^3S \) with bounded post-singular set, every periodic dynamic ray lands at a periodic point.

- Tools: Standard hyperbolic geometry results
 - Schwarz-Pick’s Lemma
 - Comparison Principle
- Strategy: Perform successive pullbacks of a fundamental segment and see in the limit it degenerates to a single point.
- Key point is the answer of the following question:
Landing theorem via hyperbolic geometry

Set post-singular set:

\[P = \bigcup_{n} f^n(S). \]

Theorem (D.)

For \(f \in \mathbb{R}^3S \) *with bounded post-singular set, every periodic dynamic ray lands at a periodic point.*

- **Tools:** Standard hyperbolic geometry results
 - Schwarz-Pick’s Lemma
 - Comparison Principle

- **Strategy:** Perform successive pullbacks of a fundamental segment and see in the limit it degenerates to a single point.

- **Key point** is the answer of the following question:

 WHO IS CONNECTED AND DISCRETE?
Landing theorem via hyperbolic geometry

Set post-singular set:

\[P = \bigcup_{n} f^n(S). \]

Theorem (D.)

For \(f \in R^3S \) with bounded post-singular set, every periodic dynamic ray lands at a periodic point.

- Tools: Standard hyperbolic geometry results
 - Schwarz-Pick’s Lemma
 - Comparison Principle
- Strategy: Perform successive pullbacks of a fundamental segment and see in the limit it degenerates to a single point.
- Key point is the answer of the following question:

WHO IS CONNECTED AND DISCRETE?

Answer: a single point...
THANK YOU FOR YOUR ATTENTION!