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ABSTRACT. While dealing with a class of generalized Bergman spaces on the unit ball, we construct
for each of these spaces a set of coherent states to apply a coherent states quantization method. This
provides us with another way to recover the Berezin transforms attached to these spaces. Finally,
a new formula representing these transforms a functions of the Laplace-Beltrami operator is estab-
lished in terms of Wilson polynomials by using the Fourier-Helgason transform.

1 INTRODUCTION

The Berezin transform introduced in [3] for certain classical bounded symmetric domains in
Cn is a transform linking the Berezin symbols and symbols for Toeplitz operators. It is present in
the study of the correspondence principle. The formula representing the Berezin transform as a
function of the Laplace operators ∆1, ..., ∆r ( r being the rank of the domain) plays a key role in the
Berezin quantization [4].

In this paper, we deal with the rank one symmetric domains. Namely the unit ball Bn in
(Cn, 〈, 〉) endowed with its Bergman metric. We are precisely concerned with the L2-eigenspaces

A2,ν
m (Bn) =

{
ϕ ∈ L2(Bn, (1− |ξ|2)−n−1dµ), Hν ϕ = εν,n

m ϕ
}

(1.1)

associated to the discrete spectrum

εν,n
m = 4ν(2m + n)− 4m(m + n), m = 0, 1, 2, ..., [ν− n/2] (1.2)

of the Schrödinger operator with uniform magnetic field on Bn given by

Hν = −4(1− |z|2)
(

n

∑
i,j=1

(
δij−zizj

) ∂2

∂zi∂zj
+ ν

n

∑
j=1

(zj
∂

∂zj
− zj

∂

∂zj
) + ν2

)
+ 4ν2 (1.3)

provided that ν > n/2. Above [x] denotes the greatest integer not exceeding x. For m ∈ Z+,
the Berezin transform associated with the space in (1.1) was obtained in [13] via the well known
formalism of Toeplitz operators as

Bν,n
m [ϕ] (z) =

m! (2ν− 2m− n) Γ (2ν−m) Γ(n)
n!Γ (2ν−m− n + 1) Γ(n + m)

∫
B

(
(1− |z|2 (1− |ξ|2)
|1− 〈z, ξ〉|2

)2(ν−m)

×
(

P(n−1,2(ν−m)−n)
m

(
1− 2 |ξ|2

))2 ϕ (ξ)(
1− |ξ|2

)n+1 dµ (ξ) (1.4)

where P(α,β)
m (.) denotes the Jacobi polynomial [16]. Moreover this transform have been expressed

as a function f (∆Bn) of the Laplace-Beltrami operator ∆Bn in terms of an 3z2-sum, see (5.24) be-
low. Our aim here is to construct for each of the eigenspaces in (1.1) a set of coherent states by
following a generalized formalism [11] in order to apply a coherent states quantization method.
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This provides us with another way to recover the Berezin transforms in (1.4) attached to the L2-
eigenspace spaces in (1.1). Finally, we add a new formula expressing the transform (1.4) as a
function of the Laplace-Beltrami operator. The idea is to make the integral (1.4) appear as ”con-
volution product” of the function ϕ with a specific radial function given in terms of the square
of a Jacobi polynomial. Next, a straightforward computation of the spherical transform of this
radial function with the use of a Clebsh-Gordon type linearisation [8] for the square of a Jacobi
polynomial amounts to a finite sum containing some integrals whose general form was given by
Koornwinder [17] in terms of Wilson polynomials.

This paper is summarized as follows. In Section 2, we recall briefly the formalism of coherent
states quantization we will be using. Section 3 deals with some needed facts on the generalized
Bergman spaces. In Section 4, we construct for each of these spaces a set of coherent states and we
apply the corresponding quantization scheme in order to recover their associated Berezin trans-
forms. In Section 5, we present the formula expressing these Berezin transforms as functions of
the Laplace-Beltrami operator by a different way and in a new form.

2 COHERENT STATES QUANTIZATION

Coherent states are mathematical tools which provide a close connection between classical and
quantum formalism. In general, they are a specific overcomplete set of vectors in a Hilbert space
satisfying a certain resolution of the identity condition. Here, we review a coherent states for-
malism starting from a measure space ”as a set of data” as presented in [11]. Let X = {x | x ∈ X}
be a set equipped with a measure dµ and L2(X, dµ) the space of dµ−square integrable functions
on X. Let A2 be a subspace of L2(X, dµ) with an orthonormal basis

{
Φj
}+∞

j=0. Let H be another

(functional) space with a given orthonormal basis
{

φj
}+∞

j=0. Then consider the family of states
{| x >}x∈X inH, through the following linear superposition:

| x >:= (N (x))−
1
2

+∞

∑
j=0

Φj (x) | φj >, (2.1)

where

N (x) =
+∞

∑
j=0

Φj (x)Φj (x). (2.2)

These coherent states obey the normalization condition

〈x | x〉H = 1 (2.3)

and the following resolution of the identity ofH

1H =
∫
X

| x >< x | N (x) dµ (x) (2.4)

which is expressed in terms of Dirac’s bra-ket notation | x >< x |meaning the rank-one -operator
ϕ 7→ 〈ϕ | x〉H . | x > . The choice of the Hilbert space H define in fact a quantization of the space
X by the coherent states in (2.1), via the inclusion map x 7→| x >∈ H and the property (2.4) is cru-
cial in setting the bridge between the classical and the quantum mechanics. The Klauder-Berezin
coherent states quantization consists in associating to a classical observable that is a function f (x)
on X having specific properties the operator-valued integral

A f :=
∫
X

| x >< x | f (x)N (x) dµ (x) (2.5)

The function f (x) ≡ Â f (x) is called upper (or contravariant) symbol of the operator A f and is
nonunique in general. On the other hand, the expectation value

〈
x | A f | x

〉
of A f with respect
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to the set of coherent states {| x >}x∈X is called lower ( or covariant) symbol of A f . Finally, asso-
ciating to the classical observable f (x) the obtained mean value

〈
x | A f | x

〉
, we get the Berezin

transform of this observable. That is,

B [ f ] (x) :=
〈

x | A f | x
〉

, x ∈ X. (2.6)

For all aspect of the theory of coherent states and their genesis, we refer to the survey [9] by
Dodonov or to the book by Gazeau [11].

3 THE SPACES A2,ν
m (Bn)

In this section, we review some results on the L2-concrete spectral analysis of the Schrödinger
operator Hν in (1.3) and acting in the Hilbert space L2(Bn, dµn),see [7], for more details. Let
Bn = {z ∈ Cn; | z |< 1} be the unit ball in Cn with the Lebesgue measure dµ normalized so that
µ(Bn) and let ∂Bn = {ω ∈ Cn, | ω |= 1} be the unit sphere with dσ the normalized measure on
it. Let G = SU(n, 1) be the group of all C-linear transforms g on Cn+1 that preserve the indefinite
hermitian form ∑n

j=1 | zj |2 − | zn+1 |2, with det g = 1. Then G acts transitively on the unit ball by

G 3 g =

(
a b
c d

)
: z→ g.z = (az + b)(cz + d)−1. (3.1)

As a homogeneous space we have the identification Bn = G/K where K = S(U(n) × U(1)) is
the stabilizer of 0. It is endowed with its usual Khaler-Bergman metric ds2 = −∑n

i,j ∂j∂j(Log(1−
|z|2))dzi ⊗ dzj. The Bergman distance and the volume element on Bn are given respectively by

cosh2 d (z, w) =
|1− 〈z, w〉|2

(1− | z |2)(1− | w |2) (3.2)

and dµn (z) = (1− | z |2)−(n+1)dµ (z).
The group G acts unitarily on the space L2(Bn, dµn), via U(g)F(z) = F(g−1.z). Let consider the
magnetic gauge vector potential given through the canonical 1-form on Bn: θ = −i(∂− ∂)Log(1− |
z |2), to which the Schrodinger operator

Hν = − (d + iνext (θ))∗ (d + iext (θ)) + 4ν2 (3.3)

can be associated. Here ν ≥ 0 is a fixed number d denotes the usual exterior derivative on
differential forms on Bn and ext(θ) is the exterior multiplication by θ while the symbol ∗ stands
for the adjoint operation with respect to the Hermitian scalar product induced by the Bergman
metric ds2 on differential forms. Note that when ν = 0, the operator in (3.3) reduces to

H0 ≡ ∆Bn = 4(1− | z |2)
n

∑
i,j=1

(
δij − zizj

) ∂2

∂zi∂zj
(3.4)

which is the Laplace-Beltrami operator of the Bergman ball Bn. For general ν ≥ 0, the Schrodinger
operator Hν in (3.3) can be expressed in the complex coordinates (z1, ..., zn) by the formula (1.3)
see [2],[6] and [12].

Now, for an arbitrary complex number λ, a fundamental family of eigenfunctions of Hν with
eigenvalue λ2 + 4ν2 + n2 is given by the Poisson kernels :

z 7→ Pν
λ(z, θ) =

(
1− | z |2

| 1− < z, θ >|2

) 1
2 (iλ+1)

(
1−< z, θ >

1− < z, θ >

)ν

, z ∈ Bn. (3.5)

Moreover, a complete description of the expansion of an eigenfunction f of Hν with eigenvalue
λ2 + 4ν2 + n2, in terms of the appropriate Fourier series in Bn have been given in [7, Proposition
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2.2]. Precisely,

f (z) = (1− ρ2)
iλ+n

2

+∞

∑
p,q=0

ρp+q ·2 z1

(
iλ + n

2
+ ν + p,

iλ + n
2
− ν + q, p + q + n; ρ2

)
aλ,ν

p,q .hp,q(θ),

(3.6)
in C∞([0, 1[×∂Bn), z = ρθ, ρ ∈ [0, 1[ and | θ |= 1. Above 2F1 denotes the Gauss hypergeometric
function [14] and aλ,ν

p,q = (aλ,ν
p,q,j) ∈ Cd(n,p,q) are complex numbers, where

d(n, p, q) :=
(p + q + n− 1)(p + n− 2)!(q + n− 2)!

p!q!(n− 1)!(n− 2)!
(3.7)

is the dimension of the space H(p, q) of restrictions to the unit sphere ∂Bn of harmonic polynomi-
als h(z) on Cn, which are homogeneous of degree p in z and degree q in z, see [10] or [19] for more
details. The notation ”.” in (3.6) means the following finite sum

aλ,ν
p,q .hp,q(θ) =

d(n,p,q)

∑
j=1

aλ,ν
p,q,jh

j
p,q(θ), (3.8)

where {hj
p,q}1≤j≤d(n,p,q) is an orthonormal basis of H(p, q). The spectral analysis of Hν have been

studied by many authors, see [7] and references therein. Actually, Hν is an elliptic densely de-
fined operator on the Hilbert space L2(Bn, (1 − 〈z, z〉)−(n+1)dµ) admitting a unique self-adjoint
realization also denoted by Hν. Its spectrum consists of a continuous part given by

[
n2,+∞

[
(cor-

responding to scattering states) and a finite number of infinitely degenerate eigenvalues εν,n
m given

by (1.2) (characterizing bound states) provided that 2ν > n. More precisely, εν,n
m = λ2

m + 4ν2 + n2,
with λm = i(2m + n− 2ν), m = 0, 1, ..., [ν− n/2]. Here, we focus on the discrete part of the spec-
trum, which is labeled by the integer m and the corresponding eigenspace A2,ν

m (Bn) defined in
(1.1). Taking into account (3.6) and expressing the involved hypergeometric in terms of Jacobi
polynomial, an orthonormal basis of A2,ν

m (Bn) can be given explicitly by

Φν,m,j
p,q (z) = κν,m,n

p,q

(
1− |z|2

)ν−m
P(n+p+q−1,2(ν−m)−n)

m−q

(
1− 2 |z|2

)
hj

p,q (z, z) (3.9)

with

κν,m,n
p,q =

(
nΓ(2ν−m− n− q + 1)Γ(p + n + m)

(m− q)!(2(ν−m)− n)Γ(2ν−m + p)

)− 1
2

. (3.10)

for varying p = 0, 1, 2, ..., q = 0, 1, ...., m and j = 1, ...., d(n; p, q). Furthermore, the space A2,ν
m (Bn)

is a reproducing kernel Hilbert space. That is, there exists a unique complex valued function Kν,m

on Bn × Bn such that, denoting Kν,m
z (w) = Kν,m(w, z), Kν,m

z belongs to A2,ν
m (Bn) for any z ∈ Bn

and
f (z) =< f , Kν,m

z >,

for all functions f in A2,ν
m (Bn) and all z ∈ Bn.Its expression can be given explicitly as function of

the Bergman geodesic distance as

Kν,m(z, w) =
(2 (ν−m)− n) Γ (2ν−m)

n!Γ (2ν−m− n + 1)

(
(1−< z, w >)

1− < z, w >

)ν

(3.11)

×(cosh d(z, w))−2(ν−m))P(n−1,2(ν−m)−n)
m (1− 2 tanh2 d(z, w))

Remark 3.1. For m = 0, the space A2,ν
0 (Bn) reduces further to be isomorphic to the weighted

Bergman space of holomorphic function ψ on Bn satisfying the growth condition∫
Bn
|ψ (z)|2 ((1− 〈z, z〉)2ν−n−1dµ (z) < +∞.

This fact justify why the eigenspace A2,ν
m (Bn) have been also called a generalized Bergman spaces of

index m.
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4 COHERENT STATES QUANTIZATION

Now, to adapt the defintion (2.1) of coherent states for the context of the generalized Bergman
spaces in (1.1) we first list the following notations.

• (X, dη) :=
(

Bn,
(

1− |z|2
)−(n+1)

dµ

)
, dη ≡ dµn is the volume element on Bn.

• x ≡ z ∈ Bn.
• A2 := A2,ν

m (Bn) ⊂ L2(Bn,
(

1− |z|2
)−n−1

dµ).

• {Φk (x)} ≡
{

Φν,m
p,q,j (z)

}
is the orthonormal basis of A2,ν

m (Bn) in (3.8)
• N (x) ≡ N (z) is a normalization factor.
• {ϕk} ≡

{
ϕp,q,j

}
is an orthonormal basis of another (functional) Hilbert spaceH.

Definition 4.1. For each fixed integer m = 0, 1, ..., [n− ν/2] , a class of generalized coherent states asso-
ciated with the space A2,ν

m (Bn) is defined according to (2.1) by the form

φν,m
z ≡| z, ν, m >:= (N (z))−

1
2 ∑

0≤q≤m,0≤p<+∞
1≤j≤d(n,p,q)

Φν,m
p,q,j (z) ϕp,q,j (4.1)

where N (z) is a normalization factor.

Proposition 4.1. The factor in (4.1) is given by

N (z) =
(2(ν−m)− n) Γ (2ν−m)

n!Γ (2ν−m− n + 1)
Γ (m + n)
m!Γ (n)

(4.2)

for every z ∈ Bn.

Proof. To calculate this factor, we start by writing the condition

〈φν,m
z , φν,m

z 〉H = 1. (4.3)

Equation (4.3) is equivalent to

(N (z))−1
+∞

∑
p=0

m

∑
q=0

d(n,p,q)

∑
j=1

Φν,m
p,q,j (z)Φν,m

p,q,j (z) = 1 (4.4)

Making use of (3.9) and (3.11) for the particular case z = w, we get that

N (z) =
(2(ν−m)− n) Γ (2ν−m)

n!Γ (2ν−m− n + 1)
P(n−1,2(ν−m)−n)

m (1) (4.5)

Next, by the following fact on Jacobi polynomial [14]:

P(α,β)
m (1) =

Γ (m + α + 1)
m!Γ (α + 1)

(4.6)

for α = n− 1 to arrive at the announced result.The states φν,m
z ≡| z, ν, m > satisfy the resolution

of the identity

1H =
∫

Bn

| z, ν, m >< z, ν, m | N (z) dν (4.7)

and with the help of them we can achieve the coherent states quantization scheme described in
Sec.2 to rederive the Berezin transform Bν,n

m in (1.4) which was defined by Toeplitz operators
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formalism in [13]. For this let us associate to any arbitrary function ϕ ∈ L2(Bn, (1− |ξ|2)−n−1dµ)
the operator-valued integral

Aϕ :=
∫

Bn

| z, ν, m >< z, ν, m | ϕ (z)N (z) (1− |z|2)−n−1dµ (4.8)

The function ϕ (z) is a upper symbol of the operator Aϕ. On the other hand, we need to calculate
the expectation value

E{|z,ν,m>}
(

Aϕ

)
:=< z, ν, m | Aϕ | z, ν, m > (4.9)

of Aϕ with respect to the set of coherent states {| z, ν, m >}z∈Bn defined in (4.1). This will consti-
tute a lower symbol of the operator Aϕ.

Proposition 4.2. Let ϕ ∈ L2(Bn, (1− |ξ|2)−n−1dµ). Then, the expectation value in (4.9) has the follow-
ing expression

E{|z,ν,m>}
(

Aϕ

)
=

Γ (n)m! (2 (ν−m)− n) Γ (2ν−m)

n!Γ (n + m) Γ (2ν−m− n + 1)

∫
B

(
(1− |z|2 (1− |ξ|2)
|1− 〈z, ξ〉|2

)2(ν−m)

(4.10)

×
(

P(n−1,2(ν−m)−n)
m

(
1− 2 |ξ|2

))2 ϕ (ξ)(
1− |ξ|2

)n+1 dµ (ξ)

for every z ∈ Bn.

Proof. We first write the action of the operator Aϕ in (4.8) on an arbitrary coherent state | z, ν, m >
in terms of Dirac’s bra-ket notation as

Aϕ | z, ν, m >=
∫

Bn

| w, ν, m >< w, ν, m | z, ν, m >
N (w)

(1− |w|2)n+1
dµ (w) (4.11)

Therefore, the expectation value reads

< z, ν, m | Aϕ | z, ν, m > =
∫

Bn

< z, ν, m | w, ν, m > < z, ν, m | w, ν, m >
N (w)

(1− |w|2)n+1
dµ (w)

(4.12)

=
∫

Bn

|< z, ν, m | w, ν, m >|2 ϕ (w)
N (w)

(1− |w|2)n+1
dµ (w) . (4.13)

Now, we need to evaluate the quantity |< z, ν, m | w, ν, m >|2 in (4.13). For this, we write the
scalar product as

< z, ν, m | w, ν, m >=
+∞

∑
p=0

m

∑
q=0

d(n;p,q)

∑
j=1

+∞

∑
r=0

m

∑
s=0

d(n;p,q)

∑
l=1

Φν,m
p,q,j (z)Φν,m

p,q,j (w)√
N (z)N (w)

〈
ϕp,q,j, ϕp,q,l

〉
H (4.14)

Recalling that 〈
ϕp,q,j, ϕp,q,l

〉
H = δj,lδp,rδq,s (4.15)

since
{

ϕp,q,j
}

is an orthonormal basis ofH, the above sum in (4.14) reduces to

< z, ν, m | w, ν, m >= (N (z)N (w))−
1
2 ∑

0≤q≤m,0≤p<+∞
1≤j≤d(n,p,q)

Φν,m
p,q,j (z)Φν,m

p,q,j (w). (4.16)
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Now, taking account (3.9) and (3.11), Equation ( 4.16) takes the form

< z, ν, m | w, ν, m > =
(2 (ν−m)− n) Γ (2ν−m)

n!Γ (2ν−m− n + 1)
(N (z)N (w))−

1
2

(
1− 〈z, w〉
1− 〈z, w〉

)ν

(4.17)

× (cosh (d (z, w)))−2(ν−m) P(n−1,2(ν−m)−n)
m

(
1− 2 tanh2 (d (z, w))

)
.

So that the square modulus of the scalar product in (4.17) reads

|< z, ν, m | w, ν, m >|2 =

(
(2 (ν−m)− n) Γ (2ν−m)

n!Γ (2ν−m− n + 1)

)2

(N (z)N (w))−1 (4.18)

× (cosh (d (z, w)))−4(ν−m)
(

P(n−1,2(ν−m)−n)
m

(
1− 2 tanh2 (d (z, w))

))2
.

Returning back to (4.12) , we get

E{|z,ν,m>}
(

Aϕ

)
=
∫

Bn

ϕ (w)

(
(2 [ν−m]− n) Γ (2ν−m)

n!Γ (2ν−m− n + 1)

)2

(N (z)N (w))−1 N (w)

(1− |w|2)n+1
(4.19)

× (cosh (d (z, w)))−4(ν−m)
(

P(n−1,2(ν−m)−n)
m

(
1− 2 tanh2 (d (z, w))

))2
dµ (w) ,

which can be also written as

E{|z,ν,m>}
(

Aϕ

)
=
∫

Bn

ϕ (w)

(
(2 (ν−m)− n) Γ (2ν−m)

n!Γ (2ν−m− n + 1)

)2 (N (z))−1

(1− |w|2)n+1
(4.20)

× (cosh (d (z, w)))−4(ν−m)
(

P(n−1,2(ν−m)−n)
m

(
1− 2 tanh2 (d (z, w))

))2
dµ (w)

=
(2(ν−m)− n) Γ (2ν−m)m!Γ (n)

n!Γ (2ν−m− n + 1) Γ (m + n)

∫
Bn

ϕ (w)

(1− |w|2)n+1
(4.21)

× (cosh (d (z, w)))−4(ν−m)
(

P(n−1,2(ν−m)−n)
m

(
1− 2 tanh2 (d (z, w))

))2
dµ (w) .

Finally, we summarize the above discussion by considering the following definition.

Definition 4.3. The Berezin transform of the classical observable ϕ ∈ L2(Bn, (1 − |ξ|2)−n−1dµ) con-
structed according to the quantization by the coherent states {| z, ν, m >} in (4.1) is obtained by associat-
ing to ϕ the obtained mean value in (4.10) . That is,

Bν,n
m [ϕ] (z) = E{|z,ν,m>}

(
Aϕ

)
(4.22)

for every z ∈ Bn.

Remark 4.4. For m = 0, the transform (4.10) reduces to the well known Berezin transform attached
to the weighted Bergman space A2,ν

0 (Bn) of holomorphic function ψ on Bn satisfying the growth
condition (3.12) and given by

Bν,n
0 [ϕ] (z) =

(2ν− n) Γ (2ν)

n!Γ (2ν− n + 1)

∫
Bn

(cosh d (z, ξ))−4ν ϕ (ξ)(
1− |ξ|2

)n+1 dµ (ξ) (4.23)

The latter one have also been written as a function of the Bergman Laplacian ∆Bn as

Bν,n
0 =

1
Γ (α + 1) Γ (α + n + 1)

∣∣∣∣Γ(α + 1 +
n
2
+

i
2

√
−∆Bn − n2

)∣∣∣∣2 (4.24)

firstly by Berezin. The above form, involving gamma factors, was derived by Peetre in [18, p. 182],
so that α there occurring in the weight of the Bergman space, corresponds to 2ν− n− 1.
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5 AN EXPRESSION OF Bν,n
m AS FUNCTION OF ∆Bn

Then Berezin transform Bν,n
m associated the generalized Bergman space A2,ν

m (Bn) is given by

Bν,n
m [ϕ] (z) = cν,n

m

∫
Bn

(
P(n−1,2(ν−m)−n)

m

(
1− 2 tanh2 d (z, ξ)

))2

(cosh d (z, ξ))4(ν−m)
ϕ (ξ)

dµ (ξ)(
1− |ξ|2

)n+1 , (5.1)

with

cν,n
m =

Γ (n)m! (2 (ν−m)− n) Γ (2ν−m)

n!Γ (n + m) Γ (2ν−m− n + 1)
(5.2)

Let Bν,n
m (z, w) be the kernel function of the above integral operator and set hν,n

m (g) = Bν,n
m (z, 0),

z = g.0. Then the integral operator (5.1) can be written as a convolution product over G:

Bν,n
m [ϕ] (z) = cν,n

m (ϕ ∗ hν,n
m )(g), z = g.0,

from which it follows easily that the Berezin operator is an L2-bounded operator.
Since Bν,n

m (z, w) is a G bi-invariant function it follows that Bν,n
m is a G-invariant operator. That is

U(g) ◦Bν,n
m = Bν,n

m ◦U(g), for every g ∈ G. Therefore Bν,n
m is, in the spectral theoretic sense, a

function of the G-invariant Laplacian ∆Bn of the unit ball. Below we give it explicitly.

Theorem 5.1.The Berezin transform Bν,n
m can be expressed as a function of the Laplace-Beltrami operator

∆Bn as

Bν,n
m =

∣∣∣∣Γ(2 (ν−m)− n
2
+

i
2

√
−∆Bn − n2

)∣∣∣∣2
2m

∑
k=0

γν,m,n
k Wk(−

1
4

∆Bn − n2

4
; 2(ν−m)− n

2
, 1 +

n
2

,
n
2

,
n
2
)

(5.3)

where Wk(.) are Wilson polynomials,

γν,n,m
k =

2m!Γ (n) (2 (ν−m)− n) Γ (2ν−m) (−1)k

Γ (n + m) Γ (2ν−m− n + 1) k!Γ2 (2 (ν−m) + k)
× Aν,n,m

k ,

and the coefficients Aν,n,m
k are given by (5.10) below.

Proof. Recall that
Bν,n

m [ϕ] (z) = cν,n
m (ϕ ∗ hν,n

m )(g), z = g.0,
where

hν,n
m (ξ) :=

(
1− |ξ|2

)2(ν−m) (
P(n−1,2(ν−m)−n)

m

(
1− 2 |ξ|2

))2
, ξ ∈ Bn, (5.4)

By this way, we have to compute the spherical transform F [hν,n
m ] of hν,n

m . Namely

F [hν,n
m ](λ) :=

∫
Bn

hν,n
m (z)φ−λ(z)dµn(z), λ ∈ R (5.5)

where φλ is the spherical function associated to ∆Bn , given by

φλ(z) = (1− | z |) iλ+n
2 2F1(

iλ + n
2

,
iλ + n

2
, n; | z |2).

Using Pfaff’s transformation [14]

2z1 (a, b, c; x) = (1− x)−b
2z1

(
b, c− a, c;

x
x− 1

)
(5.6)

we rewrite φ−λ as

φ−λ(z) = 2F1

(
−iλ + n

2
,

iλ + n
2

, n;
| z |2
| z |2 −1

)
(5.7)
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So that returning back to (5.5) we get

F [hν,n
m ](λ) = 2n

1∫
0

ρ2n−1

(1− ρ2)n+1−2(ν−m)

(
P(n−1,2(ν−m)−n)

m
(
1− 2ρ2))2

(5.8)

×2z1

(
n + iλ

2
,

n− iλ
2

, n;
ρ2

ρ2 − 1

)
dρ

To calculate this last integral, we first use a linearisation of the square of Jacobi polynomial in (5.8)
by making appeal to the following Clebsh-Gordon type formula see [8, p. 611],

P(κ,ε)
s (u) P(τ,η)

l (u) =
s+l

∑
k=0

As,l (k) P(α,δ)
k (u) (5.9)

for the particular case of parameters s = l = m, κ = τ = α = n− 1, ε = η = 2 (ν−m)− n and
δ = 2 (ν−m) . In our setting, the linearisation coefficients As,l (k) are of the form

Aν,n,m
k =

(2 (ν−m) + n)k (n)2m (2k + 2 (ν−m) + n) (−1)k (2m)! ((2 (ν−m))2m)
2

(n)k (2 (ν−m) + n)2m+k+1 (m!)2 (2m− k)! ((2 (ν−m))m)
2 (5.10)

×z2:2
2:1

(
−2m + k,−2ν− k− n : −m,−n−m + 1;−m,−m− n + 1

−2m,−2m− n + 1 : 1− 2ν, 1− 2ν
| 1, 1

)
Here zp:p′

l:l′ (.) denotes the Kampé de Fériet double hypergeometric function defined by [20, p. 63]

zp:p′

l:l′

( (
ap
)

:
(
bp′
)

,
(
cp′
)

(dl) : (κl′) , ($l′)
| x, y

)
=

+∞

∑
q,s=0

[
ap
]

q+s

[
bp′
]

q

[
cp′
]

s

[dl ]q+s [κl′ ]q [$l′ ]s

xq

q!
ys

s!
(5.11)

where
[
ap
]

s = ∏
p
j=1

(
aj
)

s in which (x)s = x (x + 1) ... (x + s− 1) is the Pochhammer symbol.
Therefore, inserting(

P(n−1,2(ν−m)−n)
m

(
1− 2ρ2))2

=
2m

∑
k=0

Aν,n,m
k P(n−1,2(ν−m))

k

(
1− 2ρ2) (5.12)

into (5.8) the Fourier-Helgason transform of hν,n
m takes the form

F [hν,n
m ](λ) =

2m

∑
k=0

Aν,n,m
k Iν,n,m

k (λ) , (5.13)

where the last term in this sum is defined by the integral

Iν,m
k (λ) =

1∫
0

2nρ2n−1

(1− ρ2)n+1−2(ν−m)
P(n−1,2(ν−m))

k

(
1− 2ρ2) (5.14)

×2F1

(
1
2
(n + iλ) ,

1
2
(n− iλ) , n;

ρ2

ρ2 − 1

)
dρ

To calculate this last integral we make the change of variable ρ = tanh t. Therefore (5.14) reads

Iν,m
k (λ) =

+∞∫
0

2n (sinh t)2n−1 P(n−1,2(ν−m))
k

(
1− 2 tanh2 t

)
(5.15)

× (cosh t)−4(ν−m)+1 .2F1

(
n + iλ

2
,

n− iλ
2

, n;− sinh2 t
)

dt
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Now, we make use of the result established by Koornwinder [17]
+∞∫
0

(cosh t)−α+β−δ−µ′−1 (sinh t)2α+1 P(α,δ)
k

(
1− 2 tanh2 t

)
×2 F1

(
α + β + 1 + iλ

2
,

α + β + 1− iλ
2

, α + 1;− sinh2 t
)

dt

=
Γ (α + 1) (−1)k Γ

( 1
2 (δ + µ′ + 1 + iλ)

)
Γ
( 1

2 (δ + µ′ + 1− iλ)
)

k!Γ
( 1

2 (α + β + δ + µ′ + 2) + k
)

Γ
( 1

2 (α− β + δ + µ′ + 2) + k
) (5.16)

×Wk

(
1
4

λ2;
1
2
(
δ + µ′ + 1

)
,

1
2
(
δ− µ′ + 1

)
,

1
2
(α + β + 1) ,

1
2
(α− β + 1)

)
where β, δ, λ ∈ R, α, δ > −1 , δ +<(µ)′ > −1 and Wk (.) is the Wilson polynomial given in terms
of the 4F3-sum as ([1],p. 158):

Wk
(

x2, a, b, c, d
)

:= (a + b)k (a + c)k (a + d)k

×4 F3

(
−k, k + a + b + c + d− 1, a + ix, a− ix

a + b, a + c, a + d | 1
)

(5.17)

for the parameters α = n− 1, δ = 2(ν−m)− n, β = 0 and µ′ = 2(ν−m)− n− 1.We find that

Iν,m
k (λ) =

2nΓ (n) (−1)k

k!Γ2 (2 (ν−m) + k)

∣∣∣∣Γ(2 (ν−m)− n
2
+ i

λ

2

)∣∣∣∣2 (5.18)

×Wk

(
1
4

λ2; 2 (ν−m)− n
2

, 1 +
n
2

,
n
2

,
n
2

)
Summarizing the above calculations

F [hν,n
m ] (λ) =

∣∣∣∣Γ(2 (ν−m)− n
2
+ i

λ

2

)∣∣∣∣2 (5.19)

×
2m

∑
k=0

γν,n,m
k Wk

(
λ

4

2
; 2 (ν−m)− n

2
, 1 +

n
2

,
n
2

,
n
2

)
with the constants

γν,n,m
k :=

2m!Γ (n) (2 (ν−m)− n) Γ (2ν−m) (−1)k Aν,n,m
k

Γ (n + m) Γ (2ν−m− n + 1) k!Γ2 (2 (ν−m) + k)
, (5.20)

where the constants Aν,n,m
k is given by (5.10). Finally, replacing λ by

√
−∆Bn − n2, we arrive at the

announced result.

Remark 5.1. Setting m = 0 in the formula (5.3) in Theorem 5.1, we recover the result of Peetre [18].

Remark 5.2. We should note that the transform Bν,n
m have been expressed in [13] as a function of

the Laplace-Beltrami operator ∆Bn in terms of the 3z2-sum as

Bν,n
m =

2m

∑
j=0

Cν,n,m
j

Γ
(

2 (ν−m)− 1
2

(
n− i

√
−∆Bn − n2

))
Γ
(

2 (ν−m) + j + 1
2

(
n + i

√
−∆Bn − n2

)) (5.21)

×3 z2

 1
2

(
n + i

√
−∆Bn − n2

)
, n + j, 1

2

(
n + i

√
−∆Bn − n2

)
(ν−m) + j + 1

2

(
n + i

√
−∆Bn − n2

)
, n

| 1
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where

Cν,n,m
j =

(2 (ν−m)− n) Γ (n + m) (−1)j Γ (n + j)
m!Γ (2ν− n−m + 1) Γ (2ν− n)

(5.22)

×
min(m,j)

∑
p=max(0,j−m)

(m!)2 Γ (2ν−m) Γ (2ν−m + j− p)
(j− p)! (m + p− j)!p! (m− p)!Γ (n + j− p) Γ (n + p)

.
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