Introduction to Holomorphic Dynamics Holomorphic Explosion

Aslı Deniz

adeniz@ruc.dk

November 29, 2013

Outline

• Introduction to Holomorphic Dynamics

- Introduction to Holomorphic Dynamics
- Studying a Specific Family

- Introduction to Holomorphic Dynamics
- Studying a Specific Family
- Holomorphic Explosion

- Introduction to Holomorphic Dynamics
- Studying a Specific Family
- Holomorphic Explosion
- Application

INTRODUCTION TO HOLOMORPHIC DYNAMICS

 \bullet domain $\rightarrow \mathbb{C}$

- domain $\to \mathbb{C}$
- $\bullet \ \ function \rightarrow holomorphic$

- domain $\to \mathbb{C}$
- $\bullet \ \ function \rightarrow holomorphic$
- iteration

- domain $\to \mathbb{C}$
- $\bullet \ \ function \rightarrow holomorphic$
- iteration
- dynamical plane

- domain $\to \mathbb{C}$
- $\bullet \ \ function \rightarrow holomorphic$
- iteration
- dynamical plane
- fixed point
 - * attracting
 - * repelling

- domain $\to \mathbb{C}$
- $\bullet \ \ function \rightarrow holomorphic$
- iteration
- dynamical plane
- fixed point
 - * attracting
 - * repelling
- attracting basin

- domain $\to \mathbb{C}$
- $\bullet \ \ function \rightarrow holomorphic$
- iteration
- dynamical plane
- fixed point
 - * attracting
 - * repelling
- attracting basin

escaping point

- domain $\to \mathbb{C}$
- function \rightarrow holomorphic
- iteration
- dynamical plane
- fixed point
 - * attracting
 - * repelling
- attracting basin

- escaping point
- stable and non-stable behavior

- domain $\to \mathbb{C}$
- $\bullet \ \ function \rightarrow holomorphic$
- iteration
- dynamical plane
- fixed point
 - * attracting
 - * repelling
- attracting basin

- escaping point
- stable and non-stable behavior
- Fatou set and Julia set

- domain $\to \mathbb{C}$
- $\bullet \ \ function \rightarrow holomorphic$
- iteration
- dynamical plane
- fixed point
 - * attracting
 - * repelling
- attracting basin

- escaping point
- stable and non-stable behavior
- Fatou set and Julia set
- singular values
 - critical value
 - * asymptotic value

- domain $\to \mathbb{C}$
- function \rightarrow holomorphic
- iteration
- dynamical plane
- fixed point
 - * attracting
 - repelling
- attracting basin

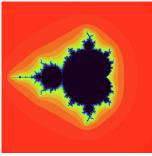
- escaping point
- stable and non-stable behavior
- Fatou set and Julia set
- singular values
 - * critical value
 - * asymptotic value
- entire function
 - * polynomial
 - * transcendental

Quadratic family in one slide

$$Q_c(z) = z^2 + c, \quad c \in \mathbb{C}.$$

Quadratic family in one slide

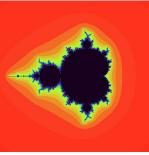
$$Q_c(z) = z^2 + c, \quad c \in \mathbb{C}.$$



Mandelbrot Set

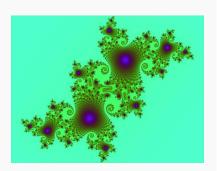
Quadratic family in one slide

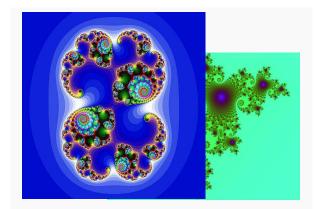
 $Q_c(z) = z^2 + c, \quad c \in \mathbb{C}.$

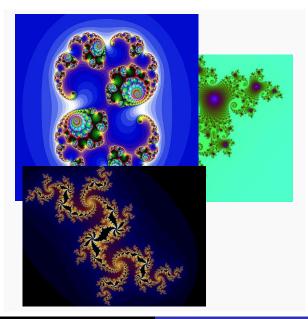


Mandelbrot Set

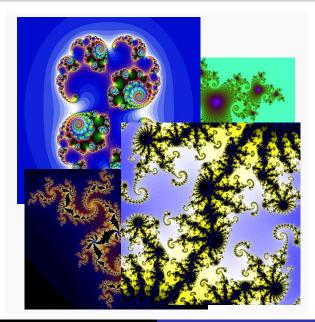
Dynamical plane for Q_0







Aslı Deniz Introduction to Holomorphic Dynamics Holomorphic Explosion



Aslı Deniz Introduction to Holomorphic Dynamics Holomorphic Explosion

STUDYING A SPECIFIC FAMILY

Polynomial

Transcendental

Polynomial

Transcendental

$$Q_c(z) = z^2 + c$$

$\begin{array}{ll} \hline Polynomial & \hline Transcendental \\ Q_c(z) = z^2 + c & \longrightarrow & E_\kappa(z) = e^z + \kappa \end{array}$

Polynomial		<u>Transcendental</u>
$Q_c(z) = z^2 + c \qquad \qquad -$	\rightarrow	$E_{\kappa}(z) = e^{z} + \kappa$
$P_{a,b}(z) = z^3 - 3a^2z + b$		

Polynomial	<u>Transcendental</u>
$Q_c(z) = z^2 + c \longrightarrow$	$E_\kappa(z)=e^z+\kappa$
$P_{a,b}(z) = z^3 - 3a^2z + b \longrightarrow$	$f_{a,\lambda}(z) = a\lambda(e^{rac{z}{a}}(z-a+1)+a-1)$

Polynomial	<u>Transcendental</u>
$Q_c(z) = z^2 + c \longrightarrow$	$E_\kappa(z)=e^z+\kappa$
$P_{a,b}(z) = z^3 - 3a^2z + b \longrightarrow$	$f_{a,\lambda}(z) = a\lambda(e^{rac{z}{a}}(z-a+1)+a-1)$
$P_a(z) = az^2(z-1)$	

Polynomial	<u>Transcendental</u>
$Q_c(z) = z^2 + c \longrightarrow$	$E_\kappa(z)=e^z+\kappa$
$P_{a,b}(z) = z^3 - 3a^2z + b \longrightarrow$	$f_{a,\lambda}(z) = a\lambda(e^{rac{z}{a}}(z-a+1)+a-1)$
$P_a(z) = az^2(z-1) \longrightarrow$	$f_{a}(z) = a(e^z(z-1)+1)$

Polynomial	<u>Transcendental</u>
$Q_c(z) = z^2 + c \longrightarrow$	$E_\kappa(z)=e^z+\kappa$
$P_{a,b}(z) = z^3 - 3a^2z + b \longrightarrow$	$f_{a,\lambda}(z) = a\lambda(e^{rac{z}{a}}(z-a+1)+a-1)$
$P_a(z) = az^2(z-1) \longrightarrow$	$f_a(z) = a(e^z(z-1)+1)$

Theorem

Any entire transcendental map of finite order with

- i. one asymptotic value with only one finite preimage, and
- ii. one simple critical point which is fixed (normalized at 0) is affine conjugate to one of the form

$$f_{\mathsf{a}}(z) = \mathsf{a}(\mathsf{e}^z(z-1)+1), \;\; \mathsf{a} \in \mathbb{C}^*.$$

There are available jobs for singular values...

There are available jobs for singular values...

The function f_a has

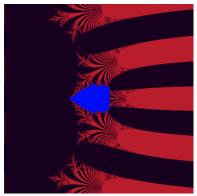
- a fixed critical value at $z = 0 \longrightarrow$ the critical value has a permanent job
 - * 0 is a superattracting fixed point so f_a has a superattracting basin,

There are available jobs for singular values...

- The function f_a has
 - a fixed critical value at $z = 0 \longrightarrow$ the critical value has a permanent job
 - * 0 is a superattracting fixed point so f_a has a superattracting basin,
 - a free asymptotic value at $z = a \longrightarrow$ the asymptotic value is free to choose!
 - * dynamical properties depend on the behavior of the asymptotic value.

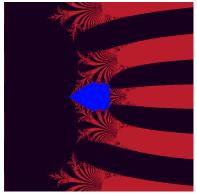
Parameter planes explain the possible jobs a singular value may have...

Parameter planes explain the possible jobs a singular value may have...

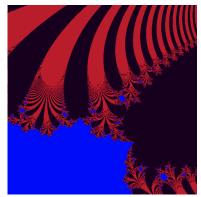


parameter plane for f_a

Parameter planes explain the possible jobs a singular value may have...

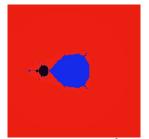


parameter plane for f_a

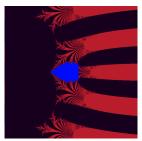


parameter plane for f_a zoom in

Parameter plane - a comparison



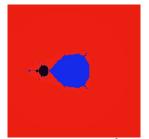
parameter plane for $P_a(z) = az^2(1-z)$



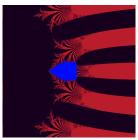
parameter plane for f_a

parameter plane for $E_a(z) = e^z + a$

Parameter plane - a comparison



parameter plane for $P_a(z) = az^2(1-z)$



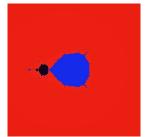
parameter plane for f_a

parameter plane for $E_a(z) = e^z + a$

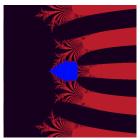
Main hyperbolic component

$$\mathcal{C}^{\mathbf{0}} = \{ \mathbf{a}; \quad \mathbf{a} \in \mathbf{A}^{\mathbf{0}}_{\mathbf{a}} \}$$

Parameter plane - a comparison



parameter plane for $P_a(z) = az^2(1-z)$



parameter plane for f_a

parameter plane for $E_a(z) = e^z + a$

Main hyperbolic component

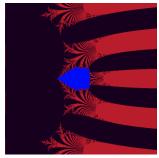
$$\mathcal{C}^{0} = \{ \mathbf{a}; \quad a \in A_{a}^{0} \}$$

Theorem

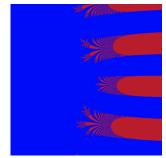
 \mathcal{C}^0 is bounded, connected and $\mathcal{C}^0 \cup \{0\} \text{ is simply connected}.$

 $a \in C^0$ if and only if A_a consists of an unbounded, totally invariant component.

 $a \in C^0$ if and only if A_a consists of an unbounded, totally invariant component.



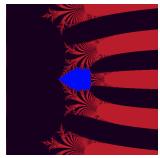
parameter plane



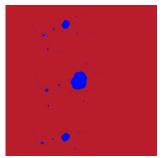
dynamical plane for a = 0.4 + 0.6i

Let \mathcal{U} be the unbounded connected component of $\mathbb{C}\setminus\overline{\mathcal{C}^0}$. If $a \in \mathcal{U}$, then A^0_a is bounded.

Let \mathcal{U} be the unbounded connected component of $\mathbb{C}\setminus\overline{\mathcal{C}^0}$. If $a \in \mathcal{U}$, then A^0_a is bounded.

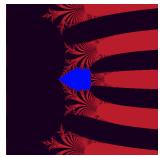


parameter plane

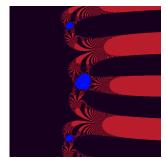


dynamical plane for a = 1.9 + 0.7i

Let \mathcal{U} be the unbounded connected component of $\mathbb{C}\setminus\overline{\mathcal{C}^0}$. If $a \in \mathcal{U}$, then A^0_a is bounded.



parameter plane



dynamical plane for a = 1.7 + 1.4i

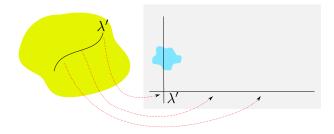
HOLOMORPHIC EXPLOSION: AN EXTENSION OF HOLOMORPHIC MOTION

Let $\Lambda \subset \widehat{\mathbb{C}}$ be a domain and $E \subset \widehat{\mathbb{C}}$. A function $H : \Lambda \times E \to \widehat{\mathbb{C}}$ is a holomorphic motion of E parametrized over Λ with base point λ' , if and only if

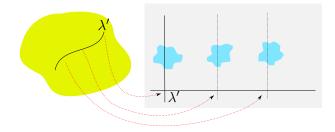
i. $H(\lambda', z) = z$ for all $z \in E$,

- ii. for every fixed $\lambda \in \Lambda$, $z \mapsto H(\lambda, z)$ is injective, and
- iii. for every fixed $z \in E$, $\lambda \mapsto H(\lambda, z)$ is holomorphic.

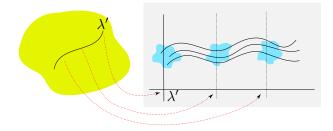
- i. $H(\lambda', z) = z$ for all $z \in E$,
- ii. for every fixed $\lambda \in \Lambda$, $z \mapsto H(\lambda, z)$ is injective, and
- iii. for every fixed $z \in E$, $\lambda \mapsto H(\lambda, z)$ is holomorphic.



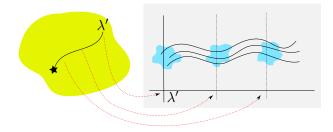
- i. $H(\lambda', z) = z$ for all $z \in E$,
- ii. for every fixed $\lambda \in \Lambda$, $z \mapsto H(\lambda, z)$ is injective, and
- iii. for every fixed $z \in E$, $\lambda \mapsto H(\lambda, z)$ is holomorphic.



- i. $H(\lambda', z) = z$ for all $z \in E$,
- ii. for every fixed $\lambda \in \Lambda$, $z \mapsto H(\lambda, z)$ is injective, and
- iii. for every fixed $z \in E$, $\lambda \mapsto H(\lambda, z)$ is holomorphic.



- i. $H(\lambda', z) = z$ for all $z \in E$,
- ii. for every fixed $\lambda \in \Lambda$, $z \mapsto H(\lambda, z)$ is injective, and
- iii. for every fixed $z \in E$, $\lambda \mapsto H(\lambda, z)$ is holomorphic.

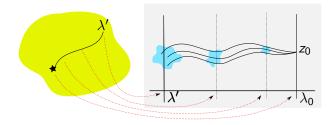


Definition (Holomorphic Explosion)

Let $\Lambda \subset \mathbb{C}$ be a domain and $E \subset \widehat{\mathbb{C}}$. A continuous function $H(\lambda, z) : \Lambda \times E \to \widehat{\mathbb{C}}$ is called a holomorphic explosion from (λ_0, z_0) , for $\lambda_0 \in \Lambda$, $z_0 \in \mathbb{C}$ parametrized by Λ , if $H(\lambda_0, E) = z_0$, and for $\Lambda' = \Lambda \setminus \{\lambda_0\}$, the restriction $H|_{\Lambda' \times E}$ is a holomorphic motion.

Definition (Holomorphic Explosion)

Let $\Lambda \subset \mathbb{C}$ be a domain and $E \subset \widehat{\mathbb{C}}$. A continuous function $H(\lambda, z) : \Lambda \times E \to \widehat{\mathbb{C}}$ is called a holomorphic explosion from (λ_0, z_0) , for $\lambda_0 \in \Lambda$, $z_0 \in \mathbb{C}$ parametrized by Λ , if $H(\lambda_0, E) = z_0$, and for $\Lambda' = \Lambda \setminus \{\lambda_0\}$, the restriction $H|_{\Lambda' \times E}$ is a holomorphic motion.



Proposition (Form of a holomorphic explosion)

Let $H : \Lambda \times E \to \widehat{\mathbb{C}}$ be a holomorphic explosion from (λ_0, z_0) , $z_0 \in \mathbb{C}$, $E \subset \widehat{\mathbb{C}}$ is a connected set. In a neighborhood of $\lambda_0 \in \Lambda$, H can be expressed as:

$$H(\lambda, z) = P(\lambda - \lambda_0) + (\lambda - \lambda_0)^n \widehat{H}(\lambda, z),$$

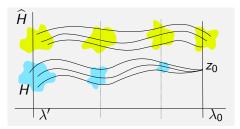
where \widehat{H} is a holomorphic motion parametrized over Λ and P is a complex polynomial.

Proposition (Form of a holomorphic explosion)

Let $H : \Lambda \times E \to \widehat{\mathbb{C}}$ be a holomorphic explosion from (λ_0, z_0) , $z_0 \in \mathbb{C}$, $E \subset \widehat{\mathbb{C}}$ is a connected set. In a neighborhood of $\lambda_0 \in \Lambda$, H can be expressed as:

$$H(\lambda, z) = P(\lambda - \lambda_0) + (\lambda - \lambda_0)^n \widehat{H}(\lambda, z),$$

where \widehat{H} is a holomorphic motion parametrized over Λ and P is a complex polynomial.

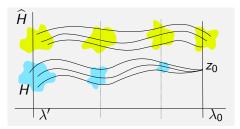


Proposition (Form of a holomorphic explosion)

Let $H : \Lambda \times E \to \widehat{\mathbb{C}}$ be a holomorphic explosion from (λ_0, z_0) , $z_0 \in \mathbb{C}$, $E \subset \widehat{\mathbb{C}}$ is a connected set. In a neighborhood of $\lambda_0 \in \Lambda$, H can be expressed as:

$$H(\lambda, z) = P(\lambda - \lambda_0) + (\lambda - \lambda_0)^n \widehat{H}(\lambda, z),$$

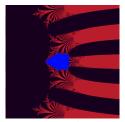
where \widehat{H} is a holomorphic motion parametrized over Λ and P is a complex polynomial.



holomorphic explosion = scaling and translation of a holomorphic motion...

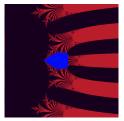
APPLICATION

• The main hyperbolic component $C^0 = \{a, a \in A_a^0\}.$



parameter plane

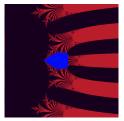
• The main hyperbolic component $C^0 = \{a, a \in A_a^0\}.$



parameter plane

Let \mathcal{U} be the unbounded connected component of $\mathbb{C} \setminus \overline{\mathcal{C}^0}$.

• The main hyperbolic component $C^0 = \{a, a \in A_a^0\}.$

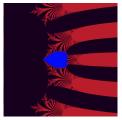


parameter plane

Let $\mathcal U$ be the unbounded connected component of $\mathbb C \setminus \overline{\mathcal C^0}$.

Recall for any $a_0 \in \mathcal{U}$

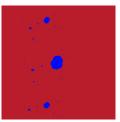
• The main hyperbolic component $C^0 = \{a, a \in A_a^0\}.$



parameter plane

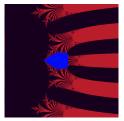
Let \mathcal{U} be the unbounded connected component of $\mathbb{C} \setminus \overline{\mathcal{C}^0}$.

Recall for any $\textit{a}_0 \in \mathcal{U}$



dynamical plane for $\textit{a}_0 \, \in \, \mathcal{U}$

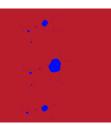
• The main hyperbolic component $C^0 = \{a, a \in A_a^0\}.$



parameter plane

Let $\mathcal U$ be the unbounded connected component of $\mathbb C \setminus \overline{\mathcal C^0}$.

Recall for any $\textit{a}_0 \in \mathcal{U}$



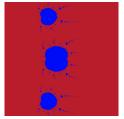
dynamical plane for $a_0 \in \mathcal{U}$ Aslı Deniz

For $a_0 \in \mathcal{U}$, there exists a holomorphic motion

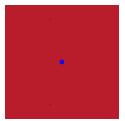
$$H:\mathcal{U}\times A^0_{a_0}\to\widehat{\mathbb{C}}$$

with base point a_0 .

What do you feel?



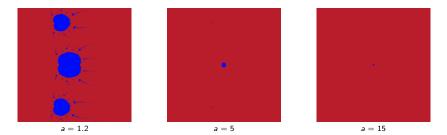
a = 1.2



a = 5

a = 15

What do you feel?



Proposition

For $a_0 \in U$, the holomorphic motion $H: U \times A^0_{a_0} \to \widehat{\mathbb{C}}$ extends to a holomorphic explosion

$$\widetilde{H}: (\mathcal{U} \cup \{\infty\}) \times A^0_{a_0} \to \widehat{\mathbb{C}}$$

from $(\infty, 0)$.

By $z \mapsto \frac{a}{2}z$, f_a conjugates to $\tau_a(z) = \frac{a^2}{2} (e^{\frac{2}{a}z}(\frac{2}{a}z-1)+1) = z^2 + \frac{2}{3a}z^3 + O(\frac{1}{a^3}z^4).$

By $z \mapsto \frac{a}{2}z$, f_a conjugates to $\tau_a(z) = \frac{a^2}{2}(e^{\frac{2}{a}z}(\frac{2}{a}z-1)+1) = z^2 + \frac{2}{3a}z^3 + O(\frac{1}{a^3}z^4).$

• Denote the immediate basin of 0 for τ_0 by $B^0_{a_0}$, and define a holomorphic motion $G: \mathcal{U} \times B^0_{a_0} \to \widehat{\mathbb{C}}$ in the same way.

By $z \mapsto \frac{a}{2}z$, f_a conjugates to

$$\tau_a(z) = \frac{a^2}{2} \left(e^{\frac{2}{a}z} \left(\frac{2}{a}z - 1 \right) + 1 \right) = z^2 + \frac{2}{3a} z^3 + O\left(\frac{1}{a^3} z^4\right).$$

- Denote the immediate basin of 0 for τ₀ by B⁰_{a0}, and define a holomorphic motion G : U × B⁰_{a0} → C in the same way.
- As $a \to \infty$, $\tau_a(z) \rightrightarrows z^2$ on compact sets of \mathbb{C} . Extend G to $\widetilde{G} : \mathcal{U} \cup \{\infty\} \times B^0_{a_0} \to \widehat{\mathbb{C}}$.

By $z \mapsto \frac{a}{2}z$, f_a conjugates to

$$\tau_a(z) = \frac{a^2}{2} \left(e^{\frac{2}{a}z} \left(\frac{2}{a}z - 1 \right) + 1 \right) = z^2 + \frac{2}{3a} z^3 + O\left(\frac{1}{a^3} z^4\right).$$

- Denote the immediate basin of 0 for τ_0 by $B^0_{a_0}$, and define a holomorphic motion $G: \mathcal{U} \times B^0_{a_0} \to \widehat{\mathbb{C}}$ in the same way.
- As $a \to \infty$, $\tau_a(z) \rightrightarrows z^2$ on compact sets of \mathbb{C} . Extend G to $\widetilde{G} : \mathcal{U} \cup \{\infty\} \times B^0_{a_0} \to \widehat{\mathbb{C}}$.

The immediate basin of 0 for f_a , a = 50 in $[-2, 2] \times [-2, 2]$

The immediate basin of 0 for τ_a , a = 50 in $[-2, 2] \times [-2, 2]$

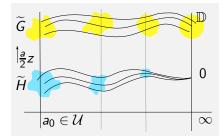
By $z \mapsto \frac{a}{2}z$, f_a conjugates to

$$\tau_a(z) = \frac{a^2}{2} \left(e^{\frac{2}{a}z} \left(\frac{2}{a}z - 1 \right) + 1 \right) = z^2 + \frac{2}{3a} z^3 + O\left(\frac{1}{a^3} z^4\right).$$

- Denote the immediate basin of 0 for τ_0 by $B^0_{a_0}$, and define a holomorphic motion $G: \mathcal{U} \times B^0_{a_0} \to \widehat{\mathbb{C}}$ in the same way.
- As $a \to \infty$, $\tau_a(z) \rightrightarrows z^2$ on compact sets of \mathbb{C} . Extend G to $\widetilde{G} : \mathcal{U} \cup \{\infty\} \times B^0_{a_0} \to \widehat{\mathbb{C}}$.

The immediate basin of 0 for f_a , a = 50 in $[-2, 2] \times [-2, 2]$

The immediate basin of 0 for τ_a , a = 50 in $[-2, 2] \times [-2, 2]$

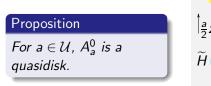


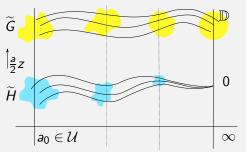
What we get by rescaling the dynamics?

Proposition

For $a \in \mathcal{U}$, A_a^0 is a quasidisk.

What we get by rescaling the dynamics?





THANK YOU FOR YOUR ATTENTION!