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Parabolic Stein Manifolds

A. Aytuna and A. Sadullaev

Abstract. An open Riemann surface is called parabolic in case every bounded
subharmonic function on it reduces to a constant. Several authors introduced
seemingly different analogs of this notion for Stein manifolds of arbitrary di-
mension. In the first part of this note we compile these notions of parabolicity
and give some immediate relations among these different definitions. In sec-
tion 3 we relate some of these notions to the linear topological type of the
Fréchet space of analytic functions on the given manifold. In sections 4 and 5
we look at some examples and show, for example, that the complement of the
zero set of a Weierstrass polynomial possesses a continuous plurisubharmonic
exhaustion function that is maximal off a compact subset.

1. Introduction

In the theory of Riemann surfaces, simply connected manifolds, which are equal
to the complex plane are usually called parabolic and the ones which equal to the
unit disk are called hyperbolic. Several authors introduced analogs of these notions
for general complex manifolds of arbitrary dimension in different ways; in terms of
triviality (parabolic type) and non-triviality (hyperbolic type) of the Kobayashi or
Caratheodory metrics, in terms of plurisubharmonic (psh) functions, etc. In some
of these considerations existence of rich family of bounded holomorphic functions
play a significant role.

On the other hand, attempts to generalize Nevanlinna’s value distribution
theory to several variables by Stoll, Griffiths, King, et al. produced notions of
”parabolicity” in several complex variables defined by requiring the existence of
certain special plurisubharmonic functions. The common features of these special
plurisubharmonic functions were that they were exhaustive and maximal outside a
compact set.

Following Stoll, we will call an n-dimensional complex manifoldX, S−parabolic
in case there is a plurisubharmonic function ρ on X with the properties:

a) {z ∈ X : ρ (z) 6 C} ⊂⊂ X , ∀C ∈ R+ (i.e. ρ is exhaustive),
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2 A. AYTUNA AND A. SADULLAEV

b) The Monge - Ampère operator (ddcρ)
n
is zero off a compact K ⊂⊂ X . That

is ρ a maximal plurisubharmonic function outside K.
We note that without the maximality condition b), an exhaustion function

σ (z) ∈ psh (X) ∩ C∞ (X) always exist for any Stein manifold X , because such
manifolds can be properly embedded in C

2n+1
w and one can take for σ the restriction

of ln |w| to X .
On S-parabolic manifolds any bounded above plurisubharmonic function is

constant. In particular, there are no non-constant bounded holomorphic functions
on such manifolds. Complex manifolds, on which every bounded above plurisub-
harmonic function reduces to a constant, a characteristic shared by parabolic open
Riemann surfaces and affine-algebraic manifolds, play an important role in the
structure theory of Fréchet spaces of analytic functions on Stein manifolds, espe-
cially in finding continuous extension operators for analytic functions from complex
submanifolds (see, [36],[4],[7]). Such spaces will be called ”parabolic” in this paper.

Special exhaustion functions with certain regularity properties play a key role
in the Nevanlinna’s value distribution theory of holomorphic maps f : X → Pm,
where Pm − m dimensional projective manifold (see.[20],[27],[31],[32]). On the
other hand for manifolds which have a special exhaustion function one can define
extremal Green functions as in the classical case and apply pluripotential theory
techniques to obtain analogs of some classical results which were proved earlier for
Cn ([11], [44]). In the special case of an affine algebraic manifolds such a program
was successfully carried out in [45]

The aim of this paper is to state and analyze different notions of parabolicity,
give examples and relate the parabolicity of a Stein manifold X with the linear
topological properties of the Fréchet space of global analytic functions on X .

The organization of the paper is as follows: In section 2, we state and compare
different definitions of parabolicity. We also bring to attention, a problem in complex
pluripotential theory that arise in this context. In the third section we relate the
notion of parabolicity of a Stein manifold X with the linear topological type of
the Fréchet space ,O(X), of analytic functions on X . We introduce the notion of
tame isomorphism of O(X) to the space of entire functions (Definition 3) and show
(Theorem 2) that a Stein manifold of dimension n is S∗-parabolic if and only if
O(X) is tamely isomorphic to the space of entire functions in n variables. The
final section is devoted to some classes of parabolic manifolds. First we look at
complements of the zero sets of entire functions and show that the complement
in Cn, of the zero set of a global Weierstrass polynomial ( algebroidal function),
is S∗-parabolic. Then we generalize a condition of Demailly for parabolicity and
use it to show that Sibony-Wong manifolds (see section 4 for the definition) are
parabolic.

Throughout the paper complex manifolds are always assumed to be connected.

2. Different notions of parabolicity

Definition 1. A Stein manifold X is called parabolic, in case it does not
possess a non-constant bounded above plurisubharmonic function.

Thus, parabolicity of X is equivalent to the following: if u (z) ∈ psh (X)
and u (z) 6 C, then u (z) ≡ const on X . It is convenient to describe parabolicity
in term of P-measures of pluripotential theory [21]. We will briefly recall this
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notion which can be defined for a general Stein manifold X. In the discussion below
we will assume without loss a generality that our Stein manifold X is properly
imbedded in C2n+1

w , n = dimX , and σ (z) is the restriction of ln |w| to X . Then
σ (z) ∈ psh (X) ∩ C∞ (X) , {σ (z) 6 C} ⊂⊂ X ∀C ∈ R. We further assume that
0 /∈ X and min σ (z) < 0. We consider σ- balls BR = {z ∈ X : σ (z) < lnR} and
as usual, define the class ℵ

(

B1, BR

)

, R > 1, of functions u (z) ∈ psh (BR) such,
that u|BR

6 0 , u|B1
6 −1. We put

ω
(

z , B1 , BR

)

= sup
{

u (z) : u ∈ ℵ
(

B1, BR

)}

.

The regularization ω∗
(

z , B1 , BR

)

is called the P- measure of B1 with respect to
BR[21].

The P- measure ω∗
(

z , B1 , BR

)

is plurisubharmonic in BR, is equal to −1 on

B1 and tends to 0 for z → ∂BR. Moreover, it is maximal, that is (ddcω∗)n = 0 in
BR\B1 and decreasing by R. We put ω∗

(

z,B1

)

= limR→∞ ω∗
(

z,B1, BR

)

.
It follows that,

ω∗
(

z,B1

)

∈ psh (X) , −1 6 ω∗
(

z,B1

)

6 0

and
(

ddcω∗
(

z,B1

))n
= 0 in BR\B1.

In the construction of ω∗
(

z,B1

)

we have used the exhaustion function σ (z) ,

however it is not difficult to see that ω∗
(

z,B1

)

depends only on X and B1; not on
the choice of the exhaustion function. Indeed one can define the P-measure for any
non pluripolar compact K ⊂ X, by selecting any sequence of domains
K ⊂ Dj ⊂⊂ Dj+1 ⊂⊂ X , j = 1, 2, ..., X =

⋃∞
j=1 Dj and employing the above

procedure with BR ’s replaced with Dj ’s. It follows from the definition, that

the plurisubharmonic functions ω∗ (z,K) + 1 and ω∗
(

z,B1

)

+ 1 are dominated
by a constant multiple of each other. In particular ω∗ (z,K) ≡ −1 if and only if
ω∗
(

z,B1

)

≡ −1. Hence the later property is an inner property of X. For further
properties of P-measures we refer the reader to [21], [23], [40], [41].

Vanishing of ω∗ (z,K)+1 on a parabolic manifold not only imply the triviality
of bounded holomorphic functions but also give some information on the growth
of unbounded holomorphic functions. In fact on parabolic manifolds, a kind of
”Hadamard three domains theorem” with controlled exponents, is true. The precise
formulation of this characteristic, that will appear below, is an adaptation of the
property (DN) of Vogt [34], which was defined for general Fréchet spaces, to the
Fréchet spaces of analytic functions. As usual we will denote by O (X) the Fréchet
spaces of analytic functions defined on a complex manifold X with the topology of
uniform convergence on its compact subsets. The proposition we will give below is
due to Zaharyuta [42] and it has been independently rediscovered by several other
authors [4],[37]. We will include a proof of this result for the convenience of the
reader.

Proposition 1. . The following are equivalent for a Stein manifold X
a) Xis parabolic;
b) P-measures are trivial on X i.e. ω∗ (z,K) ≡ −1 for every nonpluripolar

compact K ⊆ X ;
c ) For every nonpluripolar compact set K0 ⊂ X and for every compact set K

of X there is another compact set L containing K such that

‖f‖K ≤ ‖f‖
1
2

K0
‖f‖

1
2

L , ∀ f ∈ O (X) , (DN condition of Vogt)
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where ‖ ∗ ‖H denotes the sup norm on H.

Proof. If X is parabolic, then ω∗
(

z,B1

)

being bounded and plurisubhar-
monic on X reduces to −1.

Conversely, let u (z) be an arbitrary bounded above psh function on X . Let
uR = supBR

u (z) , ∞ ≥ R > 1. If u (z) 6= const, then

u (z)− uR

uR − u1
∈ ℵ

(

B1, BR

)

and hence
u (z)− uR

uR − u1
6 ω∗

(

z,B1, BR

)

.

It follows that

u (z) 6 −u1ω
∗
(

z,B1, BR

)

+ uR

(

1 + ω∗
(

z,B1, BR

))

, z ∈ BR , (1)

and as R → ∞ this gives

u (z) 6 −u1ω
∗
(

z,B1

)

+ u∞

(

1 + ω∗
(

z,B1

))

, z ∈ X . (2)

If ω∗(z,B1) ≡ −1, then u(z) ≤ u1, z ∈ X , and by maximal principle we have
u (z) = u1 ≡ const, so that a) and b) are equivalent.

Now we look at the sup norms ‖ . ‖Bm
on the sublevel balls Bm ⊃ K. Choose

an increasing sequence of norms ‖ . ‖k = ‖ . ‖mk
, k = 0, 1, . . . , m0 = 1, that satisfy

the condition c) with the dominating norm ‖ . ‖0:

‖f‖k 6 ‖f‖
1
2
0 ‖f‖

1
2

k+1 ∀f ∈ O (X)

Iterating this inequality one gets:

‖f‖1 6 ‖f‖
2k−1−1

2k−1

0 ‖f‖
1

2k−1

k ∀ f ∈ O (X) . (3)

Denoting the sequence of domains by Dk = Bmk
we consider the P- measures

ω∗
(

z,D0, Dk+1

)

, k = 1, 2.... Since these functions are continuous, by Bremer-
mann’s theorem (see [10]) for a fixed k we can find analytic functions f1, f2, ...., fm
on Dk+1 and positive numbers a1, a2, ..., am such that

ω∗
(

z,D0, Dk+1

)

+ 1− ε 6 max
16j6m

(aj ln |fj (z)|) 6 ω∗
(

z,D0, Dk+1

)

+ 1

pointwise on Dk. We note that the compact Dk is polynomially convex in
C2n+1 ⊃ X, so by Runge’s theorem the functions fj can be uniformly approxi-

mated on Dk by functions F ∈ O(X). This in turn by (3) gives us the estimate
ω∗
(

z,D0, Dk+1

)

+ 1 6 1
2k−1 + ε, z ∈ D1. Now playing the same game with D1

replaced by a given Dj we see that ω∗ (z,K,Dk+1) converge uniformly to −1 on

any compact subset of X , i.e. ω∗
(

z,D0

)

≡ −1. Hence c) ⇒ b).
Conversely, suppose that ω∗ (z,K) ≡ −1 for any K ⊂⊂ X . Fix a non-

pluripolar compact K0 ⊂ X and fix an arbitrary compact set K ⊂ X. Let Bk0 ⊃
K0 ∪K, k0 ∈ N. Then, in view of Dini’s theorem we can choose k so large that
ω∗ (z,K0, Bk) 6 −1/2 for z ∈ Bk0 . Since ω∗ (z,K0, Bk) is maximal on Bk\K0,
then for arbitrary f ∈ O (X) , f 6= 0, the inequality

ln |f(z)|
‖f‖

K0

ln
‖f‖

Bk

‖f‖
K0

6 ω∗ (z,K0, Bk) + 1 , z ∈ Bk,

is valid. This in turn implies that

‖f‖K 6 ‖f‖Bk0
6 ‖f‖

1/2
K0

‖f‖
1/2
Bk

,
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for all f ∈ O(X) . Hence a) ⇒ c). This finishes the proof of the proposition. �

Definition 2. A Stein manifold X is called S -parabolic, if there exit exhaus-
tion function ρ (z) ∈ psh (X) that is maximal outside a compact subset of X. If in
addition we can choose ρ to be continuous then we will say that X is S∗-parabolic.

In previous papers on parabolic manifolds (see for example [13],[31]) authors
usually required the condition of C∞ - smoothness of ρ. Here we only distinguish
the cases when the exhaustion function is just psh or continuous psh.

It is not difficult to see that S-parabolic manifolds are parabolic. In fact, since
the exhaustion function ρ (z) of the definition of S-parabolicity is maximal off some
compact K ⊂⊂ X , the balls Br = {ρ (z) < ln r} , r > r0, contain K for big enough
r0 and hence

ω∗
(

z,Br0 , BR

)

= max

{

−1,
ρ (z)−R

R− r0

}

.

Consequently,

ω∗
(

z,Br0

)

= lim
R→∞

ω∗
(

z,Br0 , BR

)

≡ −1 , z ∈ X.

For Stein manifolds of dimension one, the notions of S -parabolicity, S∗-
parabolicity, and parabolicity coincide. This is a consequence of the existence
of Evans-Selberg potentials ( subharmonic exhaustion functions that are harmonic
outside a given point) on a parabolic Riemann surfaces [26].

Problem 1. Do the notions of S -parabolicity and S∗-parabolicity coincide
for Stein manifolds of arbitrary dimension?

Problem 2. Do the notions of parabolicity and S -parabolicity coincide for
Stein manifolds of arbitrary dimension?

3. Spaces of Analytic Functions on Parabolic Manifolds

In this section we will relate the above discussed notions of parabolicity of a
Stein manifold X with the linear topological structure of O(X), the Fréchet space
of analytic functions on X with the compact open topology. The first result which
we will state is due to Aytuna-Krone-Terzioglu and it characterizes parabolicity of a
Stein manifold X of dimension n, in terms of the similarity of the linear topological
structures of O (X) and O (Cn). For the proof, we refer the reader to [5].

Theorem 1. For a Stein manifold X of dimension n the following are equiv-
alent:

a) X is parabolic;
b) O(X) is isomorphic as Fréchet spaces to O(Cn).

The correspondence that sends an entire function f to its Taylor coefficients
(xm)

∞
m=0 ordered in the usual way, establishes an isomorphism between O (Cn) and

the infinite type power series space

Λ∞ (αm) :=

(

x = (xm)
∞
m=0 : |x|k :=

∞
∑

m=0

|xm| ekαm < ∞ ∀k = 1, 2, ....

)
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with αm = m
1
n , m = 0, 1, 2, ..

Recall that a graded Fréchet space is a tuple (X, (|∗|s)) , where X is a Fréchet
space and (|∗|s)

∞
s=1 is a fixed system of seminorms defining the topology of X.

Whenever we deal with Λ∞ (αm) ,for an exponent sequence αm ↑ ∞ (not necessarily
(

m
1
n

)

m
) ,we will tacitly assume that we are dealing with a graded space and that

the grading is given by the norms defined in the above expression . We will need a
definition from the structure theory of Fréchet spaces;

Definition 3. A continuous linear operator T between two graded Fréchet
spaces (X, (|∗|k)) and (Y, (‖∗‖k)) is tame in case:

∃A > 0 ∀ k ∃C > 0 : ‖T (x)‖k ≤ C |x|k+A , ∀x ∈ X.

Two graded Fréchet spaces are called tamely isomorphic in case there is a one to
one tame linear operator from one onto the other whose inverse is also tame.

The graded space (O (C) , ‖∗‖k) where ‖∗‖k is the sup norm on the disc with

radius ek, is tamely isomorphic, under the correspondence described above, to the
power series space Λ∞ (n) in view of the Cauchy’s inequality. This observation
motivates our next definition:

Definition 4. Let X be a Stein manifold. The space O (X) is said to be tamely
isomorphic to an infinite type power series space in case there is an exhaustion of
M by connected holomorphically convex compact sets (Kk)

∞
k=1 with Kk ⊂ K◦

k+1

, n = 1, 2, ., such that the graded space
(

O (X) ,
(

supKk
|∗|
))

is tamely isomorphic
to an infinite type power series space.

The supremum norms are, in some sense, associated with the function theory
whereas the power series norms are associated with the structure theory of Fréchet
spaces, and tame equivalence gives one, a controlled equivalence between these
generating norm systems.

For a graded Fréchet space, linear topological properties that ensure tame
equivalence to an infinite type power series space were studied by D. Vogt and
his school, in the context of structure theory of nuclear Fréchet spaces [37], [18].
In the proof of the theorem below, we will make use of a specific result of Vogt in
this direction. We recall this theorem here for the benefit of the reader. ’

Definition 5. A graded nuclear Fréchet space
(

E,|∗|k
)

is said to be a (DN)
space in standard form in case, with suitable constants Ck > 0,

|∗|2k ≤ Ck |∗|k−1 |∗|k+1

for all k = 1, 2, ...

Definition 6. A graded nuclear Fréchet space
(

F,|∗|k
)

is said to be a (Ω)
space in standard form in case, with suitable constants Dk > 0,

|∗|∗2k ≤ Dk |∗|
∗
k−1 |∗|

∗
k+1

for all k = 1, 2, ...where |x∗|∗k = sup{|x∗ (y)| : |y|k ≤ 1} k = 1, 2, ...,denotes the dual
”norms” on F ∗
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Theorem 2. (cf [37], Th 2.3) Let E be a nuclear (DN) space in standard form,
and F an (Ω) space in standard form. Suppose that there exits a tame surjection
from F onto E. Then E is tamely isomorphic to an infinite type power series space.

For two nonnegative real valued functions α and β on a set T we will use the
notation α (t) ≺ β (t) to mean ∃ C > 0 such that α (t) ≤ Cβ (t) ∀t ∈ T.

We can now state the main result of this section:

Theorem 3. Let X be a Stein manifold. The space of analytic functions on
X, O (X) , is tamely isomorphic to an infinite type power series space if and only
if X is S∗ − Parabolic.

Proof. ⇒: Suppose that O (X) is tamely isomorphic to a power series space
Λ∞ (αm) with αm ↑ ∞. Fix a tame isomorphism T : Λ∞ (αm) → O (X). We also
fix an exhaustion {Kk}

∞
k=0 of X by holomorphically convex compact sets and an

integer B′ such that for all k

‖T (x)‖k ≺ |x|k+B′ and |x|k ≺ ‖T (x)‖k+B′ ∀x ∈ Λ∞ (αm) ,

where ‖∗‖k denotes the sup norm on Kk, k = 0, 1, 2... Let em ⊜ T (εm) where ,as
usual, εm = (0, ..., 0, 1, 0, ...) , m = 1, 2.... Set

ρ (z) ⊜ lim sup
ξ→z

lim sup
m→∞

log |em (ξ)|

αm
.

Clearly ρ is a plurisubharmonic function on X . If we set Dτ ⊜ {z : ρ (z) < τ} for
τ ∈ R ,we have:

Kk ⊆ Dk+B for large n, where B = B′ + 1.

Now fix an arbitrary z0 ∈ Dσ and choose, in view of Hartogs lemma, a small ǫ > 0
such that |em (z0)| ≤ Ceαm(σ−ǫ) for all m . For any x =

∑

xmεm ∈ Λ∞ (αm) we
have:

|T (x) (z0)| ≤
∑

m

|xm| |em (z0)| ≺
∑

m

|xm| e(σ−ǫ)αm≺‖T (x)‖[[σ]]+1+B

Since T is onto and Km’s are holomorphically convex, we have that z0 ∈ K
[[σ]]+1+B

.

Hence Dσ ⊆ K
[[σ]]+1+B

. Combining this with our previous findings we get

∃ d > 0 such that Dσ ⊆ Dσ+d ∀α large

Now fix a nice compact set K, say K = D for some domain, with the property that

∃ β > 0 such that |x|β ≺ sup
w∈K

|T (x) (w)| ∀x ∈ Λ∞ (αm) .

We wish to show that

Φ (z) ⊜ lim sup
ξ→z

{ϕ (ξ) : ϕ ∈ psh (X) , ϕ|K ≤ 0, ϕ ≤ ρ+ C for some C = C (ϕ)}

defines a plurisubharmonic function on X. To this end choose a ϕ ∈ psh (X) with
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ϕ|K ≤ 0 and ϕ ≤ ρ + C for some C = C (ϕ) > 0. By Bremermann’s theorem (
[10]),we choose a representation

ϕ (z) = lim sup
ξ→z

lim sup
j

log |fj (ξ)|

cj

of ϕ on X for some fj∈O (X) j = 1, 2...., and positive real numbers cj↑ ∞, j =
1, 2, 3.... Using Hartogs lemma in a suitable neighborhood of K we get:

∀ ǫ > 0 ∃ j0 : |fj (x)| ≤eǫcj , j ≥ j0, z ∈ K

In particular if yj ⊜ T−1 (fj) we have:

lim sup
j

log |yj|β
cj

≤ 0.

Taking into account the relation between ϕ and ρ and the inclusion Dσ ⊆ Dσ+d

for large σ, we have, in view of Hartogs lemma:

sup
w∈Dσ

|fj (w)| ≺ e(σ+d+C)cj ∀j, ∀σ large

In particular for large m, we have;

|yj |m ≺ e(m+d+C+2B)cj ,∀j.

For any non negative number t, we define:

h (t) ⊜ lim sup
j

log |yj |t
cj

.

This function is an increasing convex function on the positive real numbers. Taking
into account h (β) ≦ 0 and h (m) ≦ m+ d+ C + 2B for large m,it follows, that

h (t) ≤

(

N +D

N − β

)

t−

(

N +D

N − β

)

β

on the interval [β,N ] for every N ≥ β,where D = m + d + C + 2B. Hence
h (t) ≤ t− β for t >> β.

Going back, since

sup
w∈Dσ

|fj (w)| ≺ |yj |σ+2+2B

for z with ρ (z) = σ, we see that,

ϕ (z) = lim sup
ξ→z

lim sup
n

log |fn (ξ)|

cn
≤ h (σ + 2 + 2B + d) ≤ σ + 2 + 2B + d− β

= ρ (z) +Q, where Q = Q (B, d, β) ∈ R
+.

Hence

Φ (z) ≤ ρ (z) +Q

and so Φ ∈ L∞
loc (X). In particular Φ is a plurisubharmonic function on X and

satisfies

∃ C1 > 0 and C2 > 0 such that ρ (z)− C1 ≤ Φ (z) ≤ ρ (z) + C2 on X.

It follows that Φ is an exhaustion and as a free envelope, is maximal outside a
compact set [8].
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Observe also that the sublevel sets Ωr ⊜ {z : Φ (z) < r} satisfy :

∃ κ0 > 0 such that Ωr ⊆ Ωr+κ0 for r large enough.

Now fix a decreasing sequence{uj} of continuous plurisubharmonic functions
on X converging to Φ. Fix a compact set K and ǫ > 0. Choose an r so large

that
(

r+ κ0−
ǫ
2

r − 1
)

maxξ∈K Φ (ξ) ≤ ǫ
2 . There exits an j0 such that for j ≥ j0 on

Ωr, uj ≤ r + κ0 and uj|K ≤ ǫ
2 . Hence on Ωr :

uj −
ǫ
2

r + κ0 −
ǫ
2

≤ ω∗ (K,Ωr) =
1

r
Φ.

where ω∗ is the corresponding P-measure (see section 2). It follows that on K,

0 ≤ uj − Φ ≤

(

r + κ− ǫ
2

r
− 1

)

max
ξ∈K

Φ (ξ) +
ǫ

2
≤ ǫ for j ≥ j0.

Hence the convergence is uniform on K. So Φ is continuous.

⇐: In the proof of this implication will use the above mentioned theorem of
D. Vogt. However, first we wish bring to light a particular Ω−type condition for
O (X) provided by a given plurisubharmonic exhaustion function (see also [40]).
For this part of the argument, one does not need parabolicity. To stress this point
we will summarize our findings separately, in the below Proposition .

Let X be a Stein manifold and Φ : X → [−∞,∞) a plurisubharmonic function
that is an exhaustion. Set Dt = (x |Φ (x) < t) for t ∈ R. Choose an increasing
function ℓ so that for each t ∈ R, Dt ⊂ Dℓ(t). We fix a volume form dµ on X and
using the notation of Lemma 1 [3] , we let dε = cdµ where c is the strictly positive
continuous function that appears in Lemma 1 of [3]. Set;

Ut =

{

f ∈ O (X) :

∫

Dt

|f |2 dε ≤ 1

}

.

Fix positive numbers s1, s2, s such that ℓ (0) < s1 ≤ ℓ (s1) ≤ s2 ≤ ℓ (s2) ≤ s and
L ≥ 0 . Let

ΦL (z) ⊜

(

0 if Φ (z) ≤ 0
LΦ(z)

s otherwise
.

Consider an analytic function f ∈ Us2 . Using Lemma 1 of [3] , we choose a

decomposition of f on W+∩ W−, f = f+ − f− , with f± ∈ O (W±), W+ =
(

Ds1

)c
,

W− = Ds2 , and such that the estimates
∫

W±

∣

∣f±

∣

∣

2
e−ΦLdε ≤ K

∫

W+∩W−

|f |2 e−ΦLdµ

hold with K = K (X, s1,s2,s,Φ) > 0. On the other hand, since f ∈ Us2 ,
∫

W+∩W−

|f |2 e−ΦLdµ ≤ C

∫

W+∩W−

|f |2 e−ΦLdε ≤ Ce−
Ls1
s for some C > 0.

Hence
∫

W±

∣

∣f±

∣

∣

2
e−ΦLdε ≤ C1e

−
Ls1
s for some C1 > 0.

Now since ΦL is zero on D0 we have,
∫

D0

|f−|
2
dε =

∫

D0

|f−|
2
e−ΦLdε ≤

∫

W−

|f−|
2
e−ΦLdε ≤ C1e

−
Ls1
s
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and
∫

W−

|f − f−|
2
dε≤C2e

L(s−s1)

s .

Set

G =

(

f+ on W+

f − f− on W−

)

.

Clearly G ∈ O (X) , and,
∫

Ds

|G|2 dε ≤

∫

Ds∩W+

|G|2 e−ΦLeΦLdε+

∫

W−

|G|2 dε ≤ C3

(

e
L(s−s1)

s + e
L(s−s1)

s

)

≤ C4e
L(s−s1)

s .

Moreover
∫

D0

|G− f |2 dε =

∫

D0

|f−|
2 dε =

∫

D0

|f−|
2 e−ΦLdε ≤ C1e

−
Ls1
s .

Hence we obtain:

Us2 ⊆ Ce−
Ls1
s U0 + Ce

L(s−s1)
s Us

for some constant C > 0 which does not depend upon L.
Set t ⊜ 1 − s1

s , and r = eL(1−t)−logC . Varying the parameter L, a short com-
putation yields

∃ C > 0 such that: Us2 ⊆
1

r
U0 + Cr

t
1−tUs for all r ∈ [1,∞] .

Since the above inclusion obviously holds for 0 < r ≤ 1, and writing the value of t
we have:

∃ D > 0 such that: Us2 ⊆
D

r
U0 +

r
s
s1

r
Us for all r ∈ (0,∞) .

This is an Ω−type condition introduced by Vogt and Wagner [35] . In terms of the
”dual norms” this condition can we expressed as ( See [35]):

∃C > 0 such that ||x∗||∗s2 ≤ C
(

|||x∗|||∗0
)1−

s1
s
(

|||x∗|||∗s
)

s1
s , ∀x∗ ∈ O (X)∗ ,

where |||x∗|||∗t ⊜ sup {|x∗ (f)| : f ∈ O (X) , |||f |||t ≤ 1} , x∗ ∈ O (X)
∗
, t ∈ R

and|||f |||t =
(

∫

Dt
|f |2 dε

)
1
2

. We collect our findings, with the above notation, in:

Proposition: Let X be a Stein manifold and Φ a plurisubharmonic function
on X such that Dt ⊜ {z |Φ (z) < t} ⊂⊂ X , ∀t ∈ R. If we have

Ds0 ⊆ Ds1 ⊆ Ds1 ⊆ Ds2 ⊆ Ds2 ⊆ Ds

for some indexes s0 < s1 < s2 < s, then the Fréchet space O (X) , with the norms
defined above, satisfies the following Ω− condition:

∃C > 0 : |||x∗|||∗s2 ≤ C
(

|||x∗|||∗s0
)

s−s1
s−s0

(

|||x∗|||∗s
)

s1−s0
s−s0 , ∀x∗ ∈ O (X)∗

Now we return to the proof of the theorem. Lets fix a continuous proper
plurisubharmonic function Φ on X that is maximal outside a compact set. We
can arrange things so that Φ is maximal outside a compact subset of D0, where
as usual Dt = {x | Φ (x) < t} . Since Φ is continuous, for a given k, by taking
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s0 = k − 1 − 1
k−1 , s2 = k − 1

k , s = k + 1 − 1
k+1 and choosing s1, s0 < s1 < s2, so

that s−s1
s−s0

≤ 1
2 , the above proposition gives

∀k ≥ 2 ∃ Dk > 0 : |||x∗|||∗k− 1
k
≤ Ck

(

|||x∗|||∗k−1− 1
k−1

)
1
2
(

|||x∗|||∗k+1− 1
k+1

)
1
2

, ∀x∗ ∈ O (X)∗

Hence O (X), with the grading |||f |||k =

(

∫

D
k− 1

k

|f |2 dε

)
1
2

, k = 1, 2.... is an

Ω−space in standard form. On the other hand the grading ‖f‖k = supz∈Dk
|f (z)|

, k = 0, 1, 2...,on O (X), satisfies

‖f‖2k ≤ ‖f‖k+1 ‖f‖k−1

In fact for a non constant analytic function f on X ,and fixed kεN ,the plurisub-
harmonic function

ρ (z) = 2
log
(

|f(z)|
‖f‖

k+1

)

log
(

|f(z)|
k+1

‖f‖
k−1

)

is dominated by the maximal function Φ − (k + 1) on the boundary of the re-
gion (z : k − 1 < Φ (z) < k + 1) and hence is dominated by it on the whole region.
Rewriting this domination on the level set Φ = k yields the desired inequality.

Hence, O (X) with the grading ‖f‖k = supDk
|f |, k = 0, 1, 2.. is a ( DN)−

space in standard form.

Moreover for every k = 1, 2..., there is a Kk > 0,such that |||f |||k ≤ Kk ‖f‖k
and ‖f‖k ≤ Kk |||f |||k+2 . Now all the conditions of Vogt’s theorem mentioned
above, are satisfied with identity as the required surjection. It follows that O (X)
is tamely isomorphic to an infinite type power space. This finishes the proof of the
theorem. �

The theorem above associates to every special plurisubharmonic continuous
exhaustion function Φ on a S∗−parabolic Stein manifold X, an exponent sequence
(αm)m such that the spaces

(

O (X) ,‖∗‖k

)

with grading coming from the sup norms
on the level sets of Φ, and Λ∞ (αm) are tamely isomorphic. It might be of interest
to examine the exponent sequences (αm)

∞
m=0 obtained in this way and see how they

depend upon the special exhaustion function Φ .
To this end let X be a Stein manifold with a continuous plurisubharmonic

exhaustion function Φ that is maximal off a compact set that lies in the interior of
K0 = (z : Φ (z) ≤ 0) . We will choose a hilbertian grading

(

||∗||∧k
)

k
of O (X) so that

the Hilbert spaces Hk ⊜
(

O (X) ,||∗||
∧
k

)

∞
k=0 satisfy the continuous inclusions;

Hk →֒ O (Dk) →֒ A (K0) →֒ H0 ∀k = 1, 2..

where Dk = (z : Φ (z) < k) ,and A (K0) is the germs of analytic functions on K0

with the inductive topology. Moreover we also require that:

a) The tuple (H0, Hk) is admissible for the pair (K0, Dk)in the sense of Za-
haryuta [42], ∀kǫN,
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b) The theorem above is valid i.e. there is an infinite type power series space

Λ∞ (α) so that
(

O (X) ,
||∗||∧

k

)∞

k=0
is tamely isomorphic to Λ∞ (α) .

We will only use a special property of admissible pairs, so we will just refer
the reader to [43] for the definition, construction and a detailed discussion of this
notion. However we should mention that in our case we can take H0 to be the
closure in L2 (X, ddcmax (0,Φ))

n
), of the space of analytic functions defined near

K0 , and Hk to be O (Dk) ∩ L2 (dε) where dε is the measure that appears in the
proof of Theorem 2 ( [43] [3]) and the existence of an infinite type power series space
satisfying the required property for this choice of generating norms follows from the
proof the theorem given above. In what follows, we will denote the corresponding
graded space by

(

O (X) ,Φ
)

.
Since O (X) , for a parabolic Stein manifold X of dimension n, is isomorphic

to Λ∞

(

m
1
n

)

, regardless of the special exhaustion function we have:

∃C > 0 :
1

C
≤ lim inf

m

αm

m
1
n

≤ lim sup
m

αm

m
1
n

≤ C

for all exponent sequences (αm)
∞
m=0 such that O (X) and Λ∞ (α) are isomorphic.

To proceed further we need the notion of a Kolmogorov diameter. For a vector
space L, let us denote the collection of all subspaces of Y ⊂ L with dimY ≤ m, by
Lm,m = 1, 2...

Definition 7. Let
(

X,|∗|k
)

be a graded Fréchet space with an increasing se-

quence of seminorms. Let Ui = (xǫX : |x|i ≤ 1) , i = 1, 2.... The mth diameter of
Ui with respect to Uj, i < j, is defined by

dm (Ui, Uj) ⊜ inf (λ > 0 : ∃ Y ǫ Xk such that Ui ⊆ λUj + Y ) .

Now fix a S∗ − parabolic Stein manifold X and suppose that
(

O (X) ,Φ
)

and
Λ∞ (αm) are tamely isomorphic under an isomorphism T. In particular there exits
an A > 0 such that,

∀k ∃C > 0 : ||T (x)||∧k ≤ C |x|k+A and C ||T (x)||∧k+A ≥ |x|k , ∀xǫΛ∞ (αm) .

We will denote by Ui and Vi the unit balls corresponding to the ith norms of
(

O (X) ,Φ
)

and Λ∞ (αm) respectively.
Fix a k >> l large and suppose

Uk ⊆ λUl + L,

for some λ > 0 and L some m-dimensional subspace of O (X) . Applying T−1 to
both sides and using the tame continuity estimates we have:

1

C
Vk+A ⊆ T−1 (Uk) ⊆ λT−1 (Ul) + L′ ⊆ λCVl−A + L′, L′ ⊜ T−1 (L) .

Hence

dm (Vk+A, Vl−A) ≤ Cdm (Uk, Ul)

for all m, where the constant depends only on indices k and l.
Arguing in a similar fashion, we also have

dm (Uk+A, Ul−A) ≤ Cdm (Vk, Vl) , ∀m
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It is a standard fact that dm (Vk, Vl) = e(l−k)αm for k >> l ([12]). On the
other hand our requirement of admissibility of the norms

(

||∗||∧k
)

k
gives , in view

of a result of Nivoche-Poletsky-Zaharyuta (Theorem 5 of [43] , see also, [16]) the
asymptotics

lim
m

− ln dm (Uk, Ul)

m
1
n

=
2π (n!)

1
n

(

C
(

Dl, Dk

))
1
n

∀k >> l

where Ds = (z : Φ (z) < s) is as above, and C
(

Dl, Dk

)

is the Bedford-Taylor ca-

pacity of the condenser
(

Dl, Dk

)

[8].
Putting all these things together we have:

lim inf
m

αm

m
1
n

≥ lim
m

[

− lndm (Uk, Ul)

m
1
n

(

− lnC

(k − l + 2A) (− lndm (Uk+A, Ul−A))
+

1

(k − l+ 2A)

)]

=

2π (n!)
1
n

(

C
(

Dl, Dk

))
1
n

.
1

(k − l +A)
.

lim sup
m

αm

m
1
n

≤ lim
m

[

− lndm (Uk+A, Ul−A)

m
1
n

(

lnC

(k − l) (− ln dm (Uk+A, Ul−A))
+

1

(k − l)

)]

=

2π (n!)
1
n

(

C
(

Dl−A, Dk+A

))
1
n

.
1

(k − l)
.

On the other hand, since Φ is maximal off a compact set we can use the function

ρ (z) =
Φ− r

r − s

to compute the capacity of the condenser
(

Ds, Dr

)

for r ≫ s large enough . To be
precise, in our case we get [8]:

C
(

Ds, Dr

)

=
1

(r − s)
n

∫

X

(ddcΦ)
n
.

Taking this into account, we obtain:

lim
m

αm

m
1
n

= 2π (n!)
1
n

(
∫

X

(ddcΦ)
n

)− 1
n

.

We collect our findings in the proposition below. As usual ||∗||K denote the
sup norm on a given compact set K.

Proposition 2. Let X be a S∗ − parabolic Stein manifold of dimension n.
Fix a plurisubharmonic exhaustion function Φ on X that is maximal outside a
compact set. Then the exponent sequence (αm)n of the infinite type power series
space associated to X by Theorem 2 above satisfies:

lim
m

αm

m
1
n

= 2π (n!)
1
n

(
∫

X

(ddcΦ)
n
.

)− 1
n
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Note that one can construct a new plurisubharmonic exhaustion function that
is again maximal off a compact set and with a prescribed positive right hand side
value in the equation above, by simply multiplying the given exhaustion function
with a positive constant. In particular we have :

Corollary 1. A Stein manifold X of dimension n is S∗−parabolic if and only
if there exits an exhaustion of X by connected , holomorphically convex compact sets

(Kk)
∞
k=1 , Kk ⊂ (Kk+1)

◦ , k = 1, 2.., such that the graded spaces
(

O (X) ,
||∗||

Kk

)

is

tamely isomorphic to
(

O (Cn) ,
||∗||∆k

)

, where ∆k is the polydisc in Cn with radius

k.

4. Some classes of parabolic manifolds

An immediate class of parabolic manifolds can be obtained by considering Stein
manifolds that admit a proper analytic surjection onto some C

n. Affine algebraic
manifolds belong to this class. Moreover such manifolds are S∗-parabolic [32].

In this section we will look at some ways of generating parabolic manifolds and
give some nontrivial examples.

1. Complements of analytic multifunctions.

Let A ⊂ Cn be a closed pluripolar set whose complement is pseudoconvex.
Such sets are called ”analytic multifunctions” by some authors. They are stud-
ied extensively by various authors and are extremely important in approximation
theory, in the theory of analytic continuation and in the description of polynomial
convex hulls (see [1], [9], [15], [17], [25], [29], [30], [39] and others). These sets
are removable for the class of bounded plurisubharmonic functions defined on their
complements. Hence their complements are parabolic Stein manifolds. We would
like to restate Problem 2 given above in this setting since we hope that it will be
more tractable.

Problem 3. Let A be as above. Is X = Cn\A, S − parabolic?

In classical case, n = 1, every closed polar set A ⊂ C is analytic multifunction.
As is well-known, if K ⊂⊂ C is a closed polar set, then there exist a subharmonic in
C and harmonic in C\K function u(z), such that u|K ≡ −∞ and u(z)− ln |z| →
0 as z → ∞. One can use such functions to construct a special exhaustion function
on C\A. To this end fix a z0 /∈ K ⊜ A ∪ {∞} an arbitrary point. Then there exist
u(z) ∈ sh(C\{z0}) ∩ har({C\K}\{z0}) : u|K ≡ −∞ and u(z) → +∞ as z → z0.
Therefore, ρ(z) = −u(z) is exhaustion for X = C\A, with one singular point z0.

On the other hand if A = {p(z) = 0} ⊂ Cn is an algebraic set, then it is easy
to see that the function

ρ(z) ⊜ −
1

deg p
ln |p|+ 2 ln |z|

is a special exhaustion function for Cn\A [44].
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Theorem 4. Let A = {F (′z, zn) = zkn + f1(
′z)zk−1

n + ... + fk(
′z) = 0} be a

Weierstrass polynomial (algebraiodal) set in Cn, where fj ∈ O(Cn−1) are entire
functions, j = 1, 2, ..., k, k > 1. Then X = Cn\A is S*-parabolic.

Proof. We put

ρ(z) = − ln |F (z)|+ ln(|′z|
2
+ |F (z)− 1|2). (11)

Then ρ(z) = −∞ precisely on the finite set Q = {′z = 0, F (′0, zn) = 1} . Moreover,
ρ is maximal, (ddcρ)

n
= 0 and continuous outside of A ∪ Q, because − ln |F (z)|

is pluriharmonic and ln(|′z|2 + |F (z)− 1|2) is maximal, since for any holomorphic

vector-function f = (f1, f2, ..., fn) : f 6= 0 the function ln ‖f‖2 is a maximal psh
function outside the zero set of f .

We will show, that ρ (z) is exhaustion on X = Cn/A, i.e.

{ρ (z) < R} ⊂⊂ X for every R ∈ R. (12)

If F (z) = 0, then ρ(z) = +∞+ln(|′z|2+1) = +∞, so that ρ|A = +∞. The condition
(12) is clear, if all fj , j = 0, 1, ..., k, are constant and so we assume that, at least
one of them is not constant. Then MR = max|′z|6R{|f1(

′z)| , ..., |fk(′z)|} → ∞. For

|′z| = R > 1 and |zn| 6 M2
R we have

ρ(z) = ln
|′z|2 + |F (z)− 1|2

|F (z)|
> ln

|′z|2 + |F (z)− 1|2

1 + |F (z)− 1|
> ln

|′z|2 + |F (z)− 1|2

|′z|+ |F (z)− 1|
>

> ln
|′z|+ |F (z)− 1|

2
> ln

R

2
.

On the other hand on |′z| 6 R and |zn| = M2
R we have:

ρ (z) = ln
|′z|2 + |F (z)− 1|2

|F (z)|
≥ ln

(M2k
R −MRM

2k−2
R − ...−MR − 1)2

M2k
R +MRM

2k−2
R + ...+MR

=

= lnM2k
R (1 + αk) ,

where αk → 0 for R → ∞. It follows that ρ|∂UR
→ +∞ for R → ∞, where

UR =
{(

|′z| 6 R, |zn| 6 M2
R

)}

.
Let us now consider the level set DC = {ρ (z) < C} , C− constant. It is

an open set and it contains the pole set Q. If R is so big, that UR ⊃ Q and
min

{

ln R
2 , lnM

2k
R (1 + αR)

}

> C, then DC ⊂⊂ UR , since DC has no any compo-
nent outside UR because of maximality of ρ on X\UR. This completes the proof
that ρ is an exhaustion function. �

Corollary 2. The complement , Cn/Γ , of the graph Γ = {(′z, zn) εCn: zn = f (′z)}
of an entire function f is S∗-parabolic.

2. Manifolds, which admit an exhaustion function with small (ddc)nmass.

Demailly [11] considered manifolds X which admit a continuous plurisubhar-
monic exhaustion function ϕ, with the property that,

lim
r→∞

∫

Br
(ddcϕ)

n

ln r
= 0, (13)

where Br = {ϕ (z) < ln r}.
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We note, that S∗ - parabolic manifolds satisfy the condition (13). In fact, if
ρ (z) is special exhaustion function, then (ddcρ)

n
= 0 off a compact K ⊂⊂ X so

∫

Br
(ddcρ)n =

∫

K
(ddcρ)n = const , r > r0. Hence, (13) holds.

If X has a continuous plurisubharmonic exhaustion function satisfying the con-
dition (13), then every bounded above plurisubharmonic function on X is constant
[11], so that this kind of manifolds are parabolic. In fact, a more general result is
also true.

Theorem 5. If on a Stein manifold X of dimension n, there exist a plurisub-
harmonic (not necessary continuous) exhaustion function ϕ that satisfies,

lim inf
r→∞

∫

Br
(ddcϕ)

n

[ln r]n
= 0, (14).

Then X is parabolic.

Proof. Let’s assume that X satisfies the condition (14), but X is not para-
bolic. We take a sequence 1 < r1 < r2 < ..., rk → ∞, such that

lim
r→∞

∫

Brk

(ddcϕ)
n

[ln rk]n
= 0 (15)

Without loss a generality we can assume that the ball B1 = {ϕ (z) < 0} 6= ∅. Then
according the proposition 1 the P-measure ω∗

(

z,B1, Brk

)

decreases to ω∗
(

z,B1

)

6=

−1 as k → ∞ . The function ω∗
(

z,B1

)

is maximal, that is (ddcω∗)n = 0 in X\B1

and is equal −1 on B1. Hence, by comparison principle of Bedford-Taylor [8] we
have:

∫

Brk

[

ddcω∗
(

z,B1, Brk

)]n
=

∫

B1

[

ddcω∗
(

z,B1, Brk

)]n
>

∫

B1

[

ddcω∗
(

z,B1

)]n
= α > 0 .

However, if we apply again the comparison principle to ω∗
(

z,B1, Brk

)

and

w (z) =
ϕ (z)− ln rk

ln rk
,

then

1

(lnrk)
n

∫

Brk

[ddcϕ (z)]n =

∫

Brk

[ddcw (z)]n >

∫

Brk

[

ddcω∗
(

z,B1, Brk

)]n
> α > 0 .

This contradiction proves the theorem. �

3. Sibony-Wong manifolds.

We next consider an important class of Stein manifolds (analytic sets) with the
Liouville property, which were introduced by Sibony - Wong [28]. To describe these
spaces we need to introduce some notation. For an n dimensional closed subvariety
X of CN

w let us denote, as usual, by σ, the restriction of ln |w| on X. Denoting the
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intersection of the r- ball in CN with X by Br = {z ∈ X : σ (z) < ln r} we can
describe Sibony - Wong class as those X ′s, such that

lim
r→∞

vol (Br)

ln r
< ∞,

where the projective volume, vol (Br) is equal to H2n(Br)
r2n , H2n− the Hausdorff

measure (R2n -volume) of Br. Sibony and Wong showed that on such spaces any
bounded holomorphic function is constant.

When n = 1, a special case of a result by Takegoshi [33] states that if

sup
r

vol (Br)

g (r)
< ∞,

where g : R+ → R
+ is a nondecreasing continuous function such that

∫ ∞

0

dr

g (r)
= ∞,

then every negative smooth subharmonic function on X reduces to a constant , i.e.
X is parabolic.

The proof of this proposition is based on the following estimation:

v (r)
2 ≤ Cg (r)

d

dr
(v (r)) , ∀ v ∈ sh(X) ∩ C1(X),

where v (r) =
∫

Br
dv ∧ dcv and C > 0 is a constant. We note that if v is an

arbitrary subharmonic function we can approximate it by smooth subharmonic
functions vj ↓ v, we conclude that the above expression is also valid for arbitrary
subharmonic functions and hence the proof given in [33] shows that such an X is
parabolic. Taking g(r) = lnr, we see that 1-dimensional Sibony - Wong manifolds
are parabolic.

For n > 1, taking into account that vol (Br) =
∫

Br
(ddcσ)

n
, by Wirtinger’s

theorem, we can deduce from Theorem 3 above that X is parabolic. Summarizing,
we conclude that Sibony-Wong manifolds are parabolic for any n ∈ N.

In connection with Problem 2 of section 2 it will be of interest to investigate
S∗ – parabolicity of Sibony-Wong manifolds. Affine algebraic manifolds are among
this class since their projective volume is finite. Moreover they are S∗ – parabolic
as we have already seen. On the other hand special exhaustion functions for S∗ –
parabolic Sibony-Wong manifolds other than the algebraic ones; they can not be
asymptotically bigger than σ (z) = ln |z| restricted to X.

Theorem 6. Let X ⊂ CN be a closed submanifold and ρ (z)− a special ex-
haustion function on it. If

lim
ρ (z)

σ (z)
> α > 0,

then X is an affine-algebraic set in CN .

Proof. Taking Cρ instead ρ, if it is necessary, we can assume that, there is
some compact K ⊂⊂ X such, that

ρ (z)

σ (z)
> 1 , z ∈ X\K.
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Let supK ρ (z) = r0. Then Br = {z ∈ X : ρ (z) < ln r} , r > r0, is not empty
and open. Hence, the closure Br is not pluripolar. Therefore, the extremal Green
function

Vρ

(

z,Br

)

= sup {u (z) ∈ psh (X) : u|Br
6 0, u (z) 6 Cu + ρ (z) ∀z ∈ X}

is locally bounded on X (see [42]). In the other hand, since ρ (z) > σ (z) outside
of compact K, then

V
(

z,Br

)

6 Vρ

(

z,Br

)

,where V
(

z,Br

)

= Vσ

(

w,Br

)

|X ,

Vσ

(

w,Br

)

= sup
{

u (w) ∈ psh
(

C
N
)

: u|Br
6 0, u (w) 6 Cu + ln |w|

}

.

But the extremal function V
(

z,Br

)

is locally bounded on X if and only if X
affine-algebraic [21]. This completes the proof. �

4. Remark1: Stoll in [32] introduced and studied analytic sets, for which the
solution of the equation (in the notation of the above section),

ddcωR ∧Ψ = 0 , ωR|∂B0 = −1 , ωR|∂BR
= 0 ,

has the parabolic property, that ωR → −1 , for R ր ∞, where Ψ is close, positive
(n− 1 , n− 1) form. Atakhanov [2] called this kind of sets ”parabolic type” and
proved that the sets which satisfy

lim
r→∞

vol (Br)

ln r
= 0

are of this type. Moreover, he constructed Nevanlinna’s equidistribution theory
for holomorphic maps f : X → Pm. In particular, on this kind of sets theorems of
Picard, Nevanlinna, Valiron on defect hyperplanes are true.

Remark 2: In the literature there exits quite a number of Liouville- type
theorems for specific complex manifolds. However the property that every bounded
analytic function reduces to a constant need not imply parabolicity, as is well known
to people working in classification theory of open Riemann surfaces. The simple
example below illustrates this point.

Example: Choose, on complex plane Cz1 a subharmonic function u with the
property that {u (z1) = −∞} =

{

0, 1, 12 ,
1
3 , ...

}

. Let w (z1, z2) = u (z1) + ln |z2| .

Then w ∈ psh
(

C2
)

, and the component D of
{

(z1, z2) ∈ C2 : w (z1, z2) < 0
}

con-
taining the origin, being pseudoconvex, is a Stein manifold. Any bounded holomor-
phic function on it is constant by the Liouville’s theorem. However, the plurisub-
harmonic function w (z1, z2) 6= const and is bounded from above i.e. D is not
parabolic.
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