Growth Theorem and the Radius of Starlikeness of Close-to-Spirallike Functions

Melike Aydoğan

Yeni Yüzyıl University Department of Computer Engineering

Abstract

Let A be the class of all analytic functions in the open unit disc $\mathbb{D} = \{z \mid |z| < 1\}$ of the form $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$. Let g(z) be an element of A satisfying the condition Re $\left(\left(e^{i\alpha}\frac{g'(z)}{g(z)}\right) > 0$ for some α , where $|\alpha| < \frac{\pi}{2}$. Then g(z) is said to be α -spirallike. Such functions are known to be univalent in \mathbb{D} . Let $S^*(\alpha)$ denote the class of all functions g(z) satisfying the above condition for a given α . A function $f(z) \in A$ is called close-to- α spirallike if there exists a function g(z) in $S^*(\alpha)$ such that Re $\left(\left(\frac{f(z)}{g(z)}\right) > 0$. The class of such functions is denoted by $S^*K(\alpha)$.

The aim of this talk is to give a growth theorem and the radius of starlikeness of the class $S^*K(\alpha)$.

This is joint work with Yaşar Polatoğlu and Arzu Şen.