ISTANBUL ANALYSIS SEMINARS

CHARACTERIZATION OF POTENTIAL SMOOTHNESS OF THE HILL OPERATOR AND RIESZ BASIS PROPERTY IN TERMS OF PERIODIC, ANTIPERIODIC AND NEUMANN SPECTRA

Ahmet BATAL

Sabancı University Faculty of Engineering and Natural Sciences

Abstract: The Hill operators Ly = -y'' + v(x)y, considered with periodic, antiperiodic or Neumann boundary conditions have discrete spectra. For sufficiently large n close to n^2 there are two periodic (if n is even) or antiperiodic (if n is odd) eigenvalues λ_n^- , λ_n^+ , and respectively, one Neumann eigenvalue ν_n . We study the geometry of "spectral triangle" with vertices $(\lambda_n^+, \lambda_n^-, \nu_n)$, and show that the rate of decay of triangle size characterizes the potential smoothness. Moreover, it is proved that the periodic (antiperiodic) root function space contains a Riesz basis if and only if for even n (respectively, for odd n) $\sup_{\lambda_n^+ \neq \lambda_n^-} \{|\lambda_n^+ - \nu_n|/|\lambda_n^+ - \lambda_n^-|\} < \infty$.

Date: June 1, 2012
Time: 15:40
Place: Sabancı University, Karaköy Communication Center Bankalar Caddesi 2, Karaköy 34420, İstanbul