ISTANBUL ANALYSIS SEMINARS

CHARACTERIZATION OF POTENTIAL SMOOTHNESS AND RIESZ BASIS PROPERTY OF HILL-SCHRÖDINGER OPERATORS WITH SINGULAR PERIODIC POTENTIALS IN TERMS OF PERIODIC, ANTIPERIODIC AND NEUMANN SPECTRA

Ahmet BATAL

Sabancı University Faculty of Engineering and Natural Sciences

Abstract: The Hill-Schrődinger operators Ly = -y'' + v(x)y considered with singular complex valued π -periodic potentials v of the form v = Q' with $Q \in L^2([0, \pi])$, and subject to periodic, antiperiodic or Neumann boundary conditions have discrete spectra. For sufficiently large n, the disc $\{z : |z - n^2| < n\}$ contains two periodic (if n is even) or antiperiodic (if n is odd) eigenvalues λ_n^- , λ_n^+ and one Neumann eigenvalue ν_n . We show that the rate of decay of $|\lambda_n^+ - \lambda_n^-| + |\lambda_n^+ - \nu_n|$ determines the potential smoothness, and there is a basis consisting of periodic (or antiperiodic) root functions if and only if for even (respectively, odd) n, $\sup_{\lambda_n^+ \neq \lambda_n^-} \{|\lambda_n^+ - \nu_n|/|\lambda_n^+ - \lambda_n^-|\} < \infty$. These assertions extend and generalize our previous results proven under the assumption $v \in L^p([0, \pi]), p > 1$.

Date: November 15, 2013
Time: 15:40
Place: Sabancı University, Karaköy Communication Center Bankalar Caddesi 2, Karaköy 34420, İstanbul

İstanbul Analysis Seminars is supported by TÜBİTAK 2217.