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Die Welt ist
aus den Fugen,
die jungen Leute
werden 60

G. Köthe

The world is in disorder, the youngsters become 60
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Power series spaces and their invariants

All spaces E will be Fréchet-Hilbert spaces with Hilbert semi-norms ‖ ·‖0 ≤ ‖·‖1 ≤
. . . , the local Banach spaces Ek will be Hilbert spaces.

Exponent sequence α : 0 ≤ α1 < α2 < . . . ↑ ∞.

Λ∞(α) = {x = (x0, x1, . . . ) : |x|2t =
∞∑
j=0

|xj|2e2tαj <∞ for all t}

Invariants:
1. (DN) ∃ p ∀ k, 0 < τ < 1 ∃ K, C ‖ ‖k ≤ C‖ ‖τp‖ ‖1−τK

2. (Ω) ∀ n ∃ m ∀ N ∃ 0 < ϑ < 1, C ‖ ‖m ≤ C‖ ‖∗n
ϑ‖ ‖∗N

1−ϑ

Theorem 1 (V.-Wagner). Let E be nuclear. Then E is isomorphic to a
complemented subspace of s if and only if E satisfies (DN) and (Ω).

Problem of Mityagin. Does every complemented subspace of s have a basis?

Equivalent: Is every nuclear space with (DN) and (Ω) isomorphic to a power
series space?
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The Aytuna-Krone-Terzioğlu Theorem

Let E be a Fréchet-Hilbert-Schwartz space with (DN) and (Ω). We may assume
that “p” in (DN) is 0 and the “m” for p in (Ω) is 1, moreover the canonical map
j01 : E1 −→ E0 is compact. Let sn be the singular numbers for j01. We set

αn := − log sn.

The sequence α = (αn)n∈N0 is called associated exponent sequence for E.
Lemma 2 (Terzioğlu). If E is nuclear and has a basis then E ∼= Λ∞(α).

An exponent sequence is called stable if supn
α2n
αn

< +∞.
Theorem 3 (Aytuna-Krone-Terzioğlu). If E is nuclear, satisfies (DN) and (Ω)
and its associated exponent sequence α is stable then E ∼= Λ∞(α).

Sketch of proof:
Reduction part: E is α-nuclear, satisfies (DN) and (Ω). By structure theory: E
is isomorphic to a complemented subspace of Λ∞(α). Use Lemma:
Lemma 4 (V.). Let α be stable. If E is isomorphic to a complemented subspace
of Λ∞(α) and Λ∞(α) is isomorphic to a complemented subspace of E then E ∼=
Λ∞(α).
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Main part: Show that Λ∞(α) is isomorphic to a complemented subspace of E.

1. Step: Show that there is a local imbedding Λ∞(α) ↪→ E, that is T ∈
L(Λ∞(α), E) such that |x|0 ≤ C‖Tx‖q for suitable C and q.

2. Step: Prove the following
Lemma 5. If α is stable, Λ∞(α) nuclear and T : Λ∞(α) ↪→ Λ∞(α) is a local
imbedding. Then R(ϕ) contains a complemented subspace isomorphic to Λ∞(α).

The essential step in the Proof is the following (assuming for the sake of
simplicity |Tx|0 = |x|0):

Let ej = (0, . . . , 0, 1, 0, . . .) ∈ Λ∞(α) and fj = Tej. We choose inductively
vectors gn ∈ Λ∞(α) with following properties:

gn ∈ span{f0, . . . , f2n}
gn⊥g0, . . . , gn−1 in `2
gn⊥e0, . . . , en−1 in `2
|gn|0 = 1.

Notice that dim span{f0, . . . , f2n} = 2n+ 1. The map Px =
∑∞
n=0〈x, gn〉0gn is

what we are looking for.
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Adjustment of norms

Theorem 6. If ‖ ‖ is a Hilbert seminorm on Λ∞(α) and ‖ ‖ ≤ C| |τ , τ ≥ 0,
C ≥ 1. Then there is U ∈ L(Λ∞(α)) so that

|Ux|0 = ‖x‖ and |Ux|t ≤ C|x|t+τ

for all x ∈ Λ∞(α), t ≥ 0.

If, moreover, we have | |0 ≤ ‖ ‖ then U can be chosen as an automorphism of
Λ∞(α) with |Ux|t ≥ |x|t for all x and t.

Consequences:
1. If T : Λ∞(α) ↪→ Λ∞(α) is a local imbedding we may assume that |Tx|0 = |x|0
for every x in Λ∞(α).
2. If P is a continuous projection in Λ∞(α) we may assume that P is an
orthogonal projection in `2.

Proof. for 2.: Apply Theorem to ‖ ‖2 = |Px|20 + |Qx|20 where Q = I − P . Notice
that (Λ∞(α))0 = `2.

From now on projections in Λ∞(α) will be assumed to be orthogonal in `2.
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Triangular matrices

Definition: An endomorphism U of Λ∞(α) for which there are C > 0 and τ ≥ 0
such that

|Ux|t ≤ C |x|t+τ , x ∈ Λ∞(α)
for all t > 0 is called uniformly tame.

For any endomorphism U ∈ L(Λ∞(α)) there is a matrix (uk,j)k,j∈N0 so that

Ux =

 ∞∑
j=0

uk,jxj


k∈N0

, x ∈ Λ∞(α).

We have uk,j = 〈Uej, ek〉 if ek and ej denote the canonical basis vectors and
〈 , 〉 the `2-scalar product.
Lemma 7. Let U ∈ L(Λ∞(α)) be uniformly tame, then its matrix is upper
triangular.

Proof From the continuity estimates we get |uk,j| ≤ C et(αj−αk)+ταj for all
t > 0.
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Return to Theorem 6: Assume | |0 ≤ ‖ ‖ ≤ | |τ
⇒ exists uniformly tame automorphism U with |Ux|0 = ‖x‖
⇒ exists automorphism U with upper triangular matrix and |Ux|0 = ‖x‖

Consequence: The columns in U must be the Gram-Schmidt orthogonalization
of the unit vectors ej with respect to ‖ ‖.

Proposition 8. Assume | |0 ≤ ‖ ‖ ≤ | |τ for the Hilbert norm ‖ ‖ on Λ∞(α).
Then the Gram-Schmidt orthogonalization of the unit vectors ej with respect to
‖ ‖ gives a tamely equivalent basis of Λ∞(α).
Lemma 9. Let S ∈ L(`2) have an upper triangular matrix, then S ∈ L(Λ∞(α))
and S is uniformly tame with τ = 0.

If α is not necessarily strictly increasing, we can apply Lemma 9 to a slightly
changed α and obtain that S ∈ L(Λ∞(α)).
Lemma 10. Let α be stable S ∈ L(`2) and Sk,j = 0 for k > 2j, then S ∈
L(Λ∞(α)).

Proof. Apply Lemma 9 to S̃ = S ◦ A where Ax = (x2n)n∈N0 and observe that
S = S̃ ◦B where (Bx)j = xν for j = 2ν, (Bx)j = 0 otherwise. 2
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Lemma 11. Let α be stable, T ∈ L(Λ∞(α)) so that T induces a unitary map
in L(`2). Then there is S ∈ L(Λ∞(α)), so that P = T ◦ S is a projection in
Λ∞(α), orthogonal in `2, and R(P ) ∼= Λ∞(α).

Proof. Let ej = (0, . . . , 0, 1, 0, . . .) ∈ Λ∞(α) and fj = Tej. We choose inductively
vectors gn ∈ Λ∞(α) with following properties:

(1) gn ∈ span{f0, . . . , f2n}
(2) gn⊥g0, . . . , gn−1 in `2
(3) gn⊥e0, . . . , en−1 in `2
(4) |gn|0 = 1.

This is possible since dim span{f0, . . . , f2n} = 2n+ 1. Due to (1) we have

gn :=
2n∑
k=0

µk,nfk = T (
2n∑
k=0

µk,nek).

We set hn =
∑2n
k=0 µk,nek and obtain an orthonormal system (hn)n∈N0. We set

µk,n = 0 for k > 2n.
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We define

Sx :=
∞∑
n=0

〈x, gn〉hn.

This means S = T−1◦P where P is the orthogonal projection onto span{g0, g1, . . .}.
We have to show that S defines a map in L(Λ∞(α)).

We do that in two steps. First we define a map ϕ ∈ L(`2) by

ϕ(x) =
∞∑
n=0

〈x, gn〉en.

For the matrix elements ϕk,j = 〈ϕej, ek〉 = 〈ej, gk〉 we have ϕk,j = 0 for k > j.
Therefore, by Lemma 9, ϕ ∈ L(Λ∞(α)).

Next we define a map ψ ∈ L(`2) by

ψ(x) =
∞∑
n=0

〈x, en〉hn.
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For the matrix elements ψk,j = 〈ψej, ek〉 = 〈hj, ek〉 we obtain that ψk,j = 0 for
k > 2j. Therefore, by Lemma 10, ϕ ∈ L(Λ∞(α)).

Since obviously S = ψ ◦ϕ we have shown that S ∈ L(Λ∞(α)). It remains to show
that R(P ) ∼= Λ∞(α).

The map T ◦ ψ ∈ L(Λ∞(α), R(P )) is injective and, because of (T ◦ ψ) ◦ ϕ =
T ◦ S = P , also surjective. Therefore it is an isomorphism. 2

This yields a non-nuclear version of the Aytuna-Krone-Terzioğlu Theorem:

Theorem 12. If E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(Ω) and its associated exponent sequence α is stable, then E ∼= Λ∞(α).

The existence of the local imbedding is also nontrivial. It is based on the following
Lemma:

Lemma 13. Let E be a Fréchet-Hilbert-Schwartz space with properties (DN)
and (Ω). Let α be the associated exponent sequence. Then there exist maps
ψ ∈ L(Λ∞(α), E), ϕ ∈ L(E,Λ∞(α)) so that ψ extends to an isomorphism
ψ0 : `2 −→ E0, ϕ extends to an isomorphism ϕ0 : E0 −→ `2 and we have
sup|ξ|0≤1 |ξ − ϕ0 ◦ ψ0(ξ)|0 < 1

2.

Istanbul 2009 10



This Lemma does not use stability. The local imbedding exists for any associated
exponent sequence.

Assume E ⊂ Λ∞(β) and let α be its associated exponent sequence. Then
βn ≤ Cαn for some C and all n.

We use the same line of arguments as before with gn chosen to satisfy:

(1) gn ∈ span{f0, . . . , fn+m(n)}
(2) gn⊥g0, . . . , gn−1 in `2
(3) gn⊥e0, . . . , em(n)−1 in `2
(4) |gn|0 = 1.

We obtain:

Theorem 14. Let (m(n))n∈N0 be a nondecreasing unbounded sequence of integers,
and

lim sup
n→∞

αn+m(n)

βm(n)
<∞. (1)

Then E contains a complemented subspace isomorphic to Λ∞(γ) = Λ∞(δ) where
γn = αm(n) and δn = βm(n).

Remark: αm(n) ≤ αn+m(n) ≤ C1βm(n) ≤ C2αm(n) for large n.
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To consider a concrete non stable case we assume that αn = βn = ef(n) where
f : R+ −→ R+ is continuously differentiable, increasing and strictly concave for
large t. We assume moreover that limt→∞ f

′(t) = 0 and we put h(t) = 1/f ′(t).
Lemma 15. In this case m(n) may be chosen as h−1(cn) where c > 0. This
means E contains a complemented subspace isomorphic to Λ∞(γ) with γn =
ef(h−1(cn)).

Proof. We have to choose m(n) so that f(n+m(n))− f(m(n)) ≤ C for large n.
With the choices we have made this follows from the mean value theorem. 2

Examples:

1. If αn = en
1
s with s > 1 then we may choose γn = en

1
s−1 .

2. If αn = e(log(n+1))s with s > 1 then we may choose

γn = e(log(n+1)+(s−1) log log(n+1))s.
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Rotwein ist für
alte Knaben
eine von den
besten Gaben

W. Busch

Red wine is for old boys one of the best gifts
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