RIESZ BASES CONSISTING OF ROOT FUNCTIONS OF 1D DIRAC OPERATORS WITH REGULAR BOUNDARY CONDITIONS

PLAMEN DJAKOV (SABANCI UNIVERSITY)

This talk is based on recent results obtained in collaboration with Boris Mityagin (Ohio State University, USA) – see [1].

We study Dirac operators

$$Ly = i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{dy}{dx} + v(x)y, \quad y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad x \in [0, \pi],$$

with L^2 -potentials

$$v(x) = \begin{pmatrix} 0 & P(x) \\ Q(x) & 0 \end{pmatrix}, \quad P, Q \in L^2([0, \pi]),$$

considered on $[0, \pi]$ with regular boundary conditions. They have discrete spectrum, and the Riesz projections

$$P_n = \frac{1}{2\pi i} \int_{C_n} (z - L)^{-1} dz, \quad C_n = \{z : |z - n| = 1/2\}$$

are well defined for $|n| \ge N$ if N is sufficiently large. Our main result says that the Bari–Markus property holds, i.e.,

$$\sum_{|n|>N} ||P_n - P_n^0||^2 < \infty,$$

where P_n^0 , $n \in \mathbb{Z}$, are the Riesz projections of the free operator. From here it follows, for strictly regular boundary conditions, that the system of normalized root functions is a Riesz basis.

[1] Plamen Djakov and Boris Mityagin, Unconditional Convergence of Spectral Decompositions of 1D Dirac Operators with Regular Boundary Conditions, Oberwolfach Preprints 2010 – 21, 38 pages.