ISTANBUL ANALYSIS SEMINARS

EQUICONVERGENCE OF SPECTRAL DECOMPOSITIONS OF HILL-SCHRÖDINGER OPERATORS

Plamen DJAKOV

Sabancı University Faculty of Engineering and Natural Sciences

Abstract: We study in various functional spaces the equiconvergence of spectral decompositions of the Hill operator $L = -d^2/dx^2 + v(x)$, $x \in [0, \pi]$, with H_{per}^{-1} -potential and the free operator $L^0 = -d^2/dx^2$, subject to periodic, antiperiodic or Dirichlet boundary conditions.

In particular, we prove that

 $||S_N - S_N^0 : L^a \to L^b|| \to 0 \text{ if } 1 < a \le b < \infty, 1/a - 1/b < 1/2,$

where S_N and S_N^0 are the *N*-th partial sums of the spectral decompositions of *L* and L^0 . Moreover, if $v \in H^{-\alpha}$ with $1/2 \leq \alpha < 1$ and $\frac{1}{a} = \frac{3}{2} - \alpha$, then we obtain uniform equiconvergence: $||S_N - S_N^0 : L^a \to L^{\infty}|| \to 0$ as $N \to \infty$.

This talk is based on joint results with Boris Mityagin.

- **Date:** April 26, 2013
- *Time*: 15:40
- **Place:** Sabancı University, Karaköy Communication Center Bankalar Caddesi 2, Karaköy 34420, İstanbul