ISTANBUL ANALYSIS SEMINARS

MULTIDIMENSIONAL SPECTRAL ORDER

Artur PŁANETA

University of Agriculture in Krakow Kraków, Poland

Abstract: Spectral order was introduced by M. P. Olson in 1971 for bounded selfadjoint operators. The motivation to consider a new order was the fact that the set of all selfadjoint bounded operators with usual order given by quadratic forms is not lattice ordered. As shown by Kadison, the set S of all bounded selfadjoint operators on a complex Hilbert space \mathcal{H} is an anti-lattice. A little bit earlier, Sherman proved that a C^* -algebra \mathcal{A} of bounded linear operators on \mathcal{H} is commutative provided that the set of all selfadjoint elements of \mathcal{A} is lattice ordered by " \leq ". Olson showed by himself that the set of all selfadjoint elements of a von Neumann algebra of bounded linear operators on \mathcal{H} is a conditionally complete lattice with respect to the spectral order.

In my talk I will present the spectral order in the case of unbounded selfadjoint operators and *n*-tuples of commuting unbounded selfadjoint operators. I will discuss especially classes of functions which preserve the spectral order and give connections between spectral order and usual order for selfadjoint operators.

Date: January 13, 2012

Time: 15:40

Place: Sabancı University, Karaköy Communication Center Bankalar Caddesi 2, Karaköy 34420, İstanbul