Harmonic Univalent Functions for Which Analytic Part is Convex Functions of Complex Order

Yaşar POLATOĞLU

Department of Mathematics and Computer Science, İstanbul Kültür University, 34156 İstanbul, Turkey e-mail: y.polatoglu@iku.edu.tr

Abstract

In a simply connected domain $\mathcal{U} \subset \mathbb{C}$ a complex-valued harmonic univalent function f has the representation $f(z) = h(z) + \overline{g(z)}$, where h(z) and g(z) are analytic function in \mathbb{U} and called analytic part and co-analytic part of f, respectively.

Let $h(z) = a_0 + a_1 z + a_2 z^2 + \cdots$ and $g(z) = b_0 + b_1 z + b_2 z^2 + \cdots$ be analytic functions in the open unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, if

 $|h'(z)|^2 - |g'(z)|^2 > 0$ or $|h'(z)|^2 - |g'(z)|^2 < 0$,

then f is called sense-preserving harmonic function in \mathbb{D} . The class of sense-preserving harmonic functions in \mathbb{D} with $a_0 = b_0 = 0$ and $a_1 = 1$ will be denoted by \mathcal{S}_H . Thus \mathcal{S}_H contains standard class of univalent functions \mathcal{S} .

The aim of this paper is to investigate the subclass of S_H , by choosing only these functions whose analytic parts are convex functions of complex order, for such mappings we will find distortion theorems.

²⁰⁰⁰ Mathematics Subject Classification: 30C45, 30C55. Key words and phrases: Harmonic univalent, convex functions of complex order, sense-preserving harmonic functions, distortion theorem, Appell hypergeometric function.