Some Results in Metric Trees

The study of injective envelopes of metric spaces, also known as metric trees (R-trees or T-theory), has its motivation in many subdisciplines of mathematics as well as biology/medicine and computer science. Its relationship with biology and medicine stems from the construction of phylogenetic trees [5]. Concepts of "string matching" in computer science is closely related with the structure of metric trees [4]. A metric tree is a metric space (M, d)such that for every x, y in M there is a unique arc between x and y and this arc is isometric to an interval in \mathbb{R} [3],[2]. In this talk, we examine convexity and compact structures in metric trees and show that nonempty closed convex subsets of a metric tree enjoy many properties shared by convex subsets of Hilbert spaces and admissible subsets of hyperconvex spaces. We show that a set valued mapping T^* of a metric tree M with convex values has a selection $T: M \to M$ for which $d(T(x), T(y)) \leq d_H(T^*(x), T^*(y))$ for each $x, y \in M$. Here by d_H we mean the Hausdroff distance [1]. We will mention some applications to k-set contractions as well as an application of the above selection theorem. Furthermore we define n-widths $\delta_n(A)$ of a subset A of a metric tree M and show that even in the absence of linear structure the limit of n-widths as $n \to \infty$ is equal to the ball measure of noncompactness.

References

- A. G.Aksoy, M.A. Khamsi A Selection Theorem in Metric Trees, Proc. Amer. Math. Soc. 134, No.10 (2006), 2957-2966.
- W. B. Johnson, J. Lindenstrauss and D. Preiss, Lipschitz quotients from metric trees and from Banach spaces containing l₁¹, J. Funct. Anal. 194 (2002), 332–346.
- A. W. M. Dress, V. Moulton and W. Terhalle, *T-Theory, An overview*. European J. Combin. 17 (1996), 161–175.
- I. Bartolini, P. Ciaccia, and M. Patella, String Matching with metric trees using approximate distance. SPIR, Lecture notes in Computer science, Springer Verlag, 2476, (2002), 271–283.
- 5. C. Semple, and M. Steel "Phylogenetics" Oxford lecture series in mathematics and its applications, 24, 2003.